In the recent past Metal-organic frameworks (MOFs) based thin films have demonstrated superior performance in various technological applications such as optical and optoelectronic devices, electrochemical energy storage, catalysis, and sensing. Herein we report tuning the optical performance of stable complexes using Cu and Fe metal ions with carboxylate benzene dicarboxylic (BDC), leading toward the formation of novel MOF structures. The formation of Cu-BDC and Fe-BDC were confirmed by XRD and SEM studies. The thermal stability of two MOFs was investigated, indicating that, the Cu-BDC is more stable than Fe-BDC. Further, the optical properties were investigated in the wavelength range 325-1100 nm, and the Fe-BDC exhibited greater optical transmission properties than Cu-BDC by 33 %, as investigated by Wemple-DiDomenico and Tauc models. The dispersion parameters related to optical studies for Cu-BDC were better in comparison to Fe-BDC, which could be attributed to the increase in Cu valence electrons due to an increase in the number of cations. The electrochemical behavior in terms of CV measurements shows the presence of pseudo capacitance in both Fe-BDC and Cu-BDC MOFs. The improved CV performance of Cu-BDC MOF suggests that it could be used as a storage material. This work successfully demonstrates the tailoring of optical properties related to MOF thin films through the formation of stable complexes using BDC as a potential material for the fabrication of OLED's and Solar cells. The improved CV performance suggests that these MOF based materials could be used as anodes in fabrication of batteries or supercapacitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10839998 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e25065 | DOI Listing |
ACS Nano
January 2025
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.
Silicon carbide (SiC) is a semiconductor used in quantum information processing, microelectromechanical systems, photonics, power electronics, and harsh environment sensors. However, its high-temperature stability, high breakdown voltage, wide bandgap, and high mechanical strength are accompanied by a chemical inertness, which makes complex micromachining difficult. Photoelectrochemical (PEC) etching is a simple, rapid means of wet processing SiC, including the use of dopant-selective etch stops that take advantage of the mature SiC homoepitaxy.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand.
The organic semiconductor Y6 has been extensively used as an acceptor in organic photovoltaic devices, yielding high efficiencies. Its unique properties include a high refractive index, intrinsic exciton dissociation, and barrierless charge generation in bulk heterojunctions. However, the direct impact of the crystal packing morphology on the photophysics of Y6 has remained elusive, hindering further development of heterojunction and homojunction devices.
View Article and Find Full Text PDFACS Electrochem
January 2025
Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.
We demonstrate the application and benefit of optically transparent carbon electrodes (OTCEs) for single entity nanoelectrochemistry. OTCEs are prepared by pyrolyzing thin photoresist films on fused quartz coverslips to create conductive, transparent, thin films. Optical, electrical, topographical, and electrochemical properties of OTCEs are characterized to evaluate their suitability for single entity electrochemistry.
View Article and Find Full Text PDFChem Sci
January 2025
Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen Guangdong 518060 China
SbTe-based flexible thin films can be utilized in the fabrication of self-powered wearable devices due to their huge potential in thermoelectric performance. Although doping can significantly enhance the power factor value, the process of identifying suitable dopants is typically accompanied by numerous repeating experiments. Herein, we introduce Zn doping into thermally diffused p-type SbTe flexible thin films with a candidate dopant validated using the first-principles calculations.
View Article and Find Full Text PDFHeliyon
January 2025
Bangladesh Council of Scientific and Industrial Research (BCSIR), Bangladesh.
A soda lime glass substrate is used for fabricating CuZnSnS (CZTS) thin films using copper (II) sulfide (CuS), zinc sulfide (ZnS), and tin sulfide (SnS) targets using an advanced co-sputtering deposition process. Following that, the films are annealed at 470 °C without sulfur (S). An algorithm based on the deposition rate of the previously specified targets set the co-sputtering condition, which maintains a deposition pressure of 5, 10, 15, and 20 mTorr.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!