Lateral flow immunoassay (LFIA) has played a vital role in point-of-care (POC) testing on account of its simplicity, rapidity, and low cost. However, the low sensitivity and difficulty of quantitation limit its further development. Sensitive markers with new detection modes are being developed to dramatically improve LFIA's performance. Herein, a ligand-complex approach was proposed to uniformly coat a thin layer of Au onto Ag triangular nanoplates (Ag TNPs) without etching the Ag cores, which not only retain the unique optical properties from Ag TNPs but also acquire the surface stability and biocompatibility of gold. The localized surface plasmon resonance absorption of these Ag@Au TNPs could be finely adjusted from visible (550 nm) to the second near-infrared region (NIR-II) (1100 nm), and even longer, by simply adjusting the ratio between edge length and thickness. Utilizing the Ag@Au TNPs as new markers for LFIA, a highly sensitive colorimetric and photothermal dual-mode detection of the SARS-CoV-2 nucleocapsid protein was achieved with a very low background. The Ag@Au TNPs showed an exceedingly high photothermal conversion efficiency of 61.4% (ca. 2 times higher than that of Au nanorods), endowing the LFIA method with a low photothermal detection limit (40 pg/mL), which was 25-fold lower than that of the colorimetric results. The generality of the method was further verified by the sensitive and accurate analysis of cardiac troponin I (cTnI). This method is robust, reproducible, and highly specific and has been successfully applied to SARS-COV-2 detection in 35 clinical samples with satisfactory results, demonstrating its potential for POC applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.3c05787DOI Listing

Publication Analysis

Top Keywords

ag@au tnps
12
highly sensitive
8
sensitive colorimetric
8
colorimetric photothermal
8
photothermal dual-mode
8
lateral flow
8
flow immunoassay
8
tnps
5
near-infrared responsive
4
ag@au
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!