Differential diagnosis of focal brainstem lesions detected on MRI is challenging, especially in young children. Formerly, brainstem gliomas were classified mainly based on MRI features and location. However, since 2016, the World Health Organization's brainstem lesion classification requires tissue biopsy to reveal molecular characteristics. Although modern techniques of stereotactic or navigation-guided biopsy ensure accurate biopsy of the lesion with safety, biopsy of brainstem lesions is still generally not performed. Here, we report a focal brainstem lesion mimicking brainstem glioma in a 9-year-old girl. Initial MRI, MR spectroscopy, and C-methionine positron emission tomography (PET) features suggested low-grade glioma or diffuse intrinsic pontine glioma. However, repeated MR spectroscopy, perfusion MRI, and fluorodeoxyglucose PET findings suggested that it was more likely a non-tumorous lesion. As the patient presented not with a neurological manifestation but with precocious puberty, the attending oncologist chose to observe with regular follow-up MRI. The pontine lesion with high signal intensity on T2-weighted MRI regressed from the 6-month follow-up and became invisible on the 1.5-year follow-up MRI. We reviewed brainstem glioma-mimicking lesions in the literature and discussed the key points of differential diagnosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864136 | PMC |
http://dx.doi.org/10.14791/btrt.2023.0039 | DOI Listing |
Childs Nerv Syst
December 2024
Department Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India.
Introduction: Diffuse intrinsic pontine glioma (DIPG) in children comprises 80% of brainstem gliomas. In 2021, 5th edition of WHO CNS tumor classification defined H3K27M altered diffuse midline gliomas (DMGs) which replaced this entity. Lesion location precludes resection and the only current option available is radiotherapy.
View Article and Find Full Text PDFJ Mol Neurosci
December 2024
Department of Neurosurgery, National Children's Medical Center (Shanghai), Children's Hospital of Fudan University, No.399 Wan Yuan Avenue, Minhang District, Shanghai, 201102, China.
Focal cortical dysplasia (FCD) II is a cortical malformation characterized by cortical architectural abnormalities, dysmorphic neurons, with or without balloon cells. Here, we systematically explored the pathophysiological role of the GATOR1 subunit NPRL3 variants including a novel mutation from iPSCs derived from one FCD II patient. Three FCD II children aged 0.
View Article and Find Full Text PDFJ Neurotrauma
December 2024
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Traumatic brain injury (TBI) after high-energy, behind helmet blunt trauma (BHBT) is an important but poorly understood clinical entity often associated with apnea and death in humans. In this study, we use a swine model of high-energy BHBT to characterize key neuropathologies and their association with acute respiratory decompensation. Animals with either stable or critical vital signs were euthanized within 4 h after injury for neuropathological assessment, with emphasis on axonal and vascular pathologies in the brainstem.
View Article and Find Full Text PDFClin Radiol
November 2024
Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Aim: This study aimed to summarise and analyse the magnetic resonance imaging (MRI) characteristics of patients with myelin oligodendrocyte glycoprotein-immunoglobulin G-associated disease (MOGAD), and to enhance the accuracy of disease diagnosis and advance scientific research.
Materials And Methods: A retrospective collection of clinical data from 103 patients with MOGAD was conducted. The distribution and signal characteristics of intracranial lesions on MRI were analysed.
Front Immunol
December 2024
Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
Objective: Autoimmune glial fibrillary acidic protein astrocytopathy (GFAP-A) is a novel steroid sensitive autoimmune disease, without a diagnostic consensus. The purpose of this study was to improve early GFAP-A diagnosis by increasing awareness of key clinical characteristics and imaging manifestations.
Methods: Medical records of 13 patients with anti-GFAP antibodies in serum or cerebrospinal fluid (CSF) were reviewed for cross-sectional and longitudinal analysis of clinical and magnetic resonance imaging (MRI) findings.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!