Background: The most aggressive form of breast cancer is triple-negative breast cancer (TNBC), which lacks expression of the estrogen receptor (ER) and progesterone receptor (PR), and does not have overexpression of the human epidermal growth factor receptor 2 (HER2). Treatment options for women with TNBC tumors are limited, unlike those with ER-positive tumors that can be treated with hormone therapy, or those with HER2-positive tumors that can be treated with anti-HER2 therapy. Therefore, we have sought to identify novel targeted therapies for TNBC. In this study, we investigated the potential of a novel phosphatase, NUDT5, as a potential therapeutic target for TNBC.
Methods: The mRNA expression levels of NUDT5 in breast cancers were investigated using TCGA and METABRIC (Curtis) datasets. NUDT5 ablation was achieved through siRNA targeting and NUDT5 inhibition with the small molecule inhibitor TH5427. Xenograft TNBC animal models were employed to assess the effect of NUDT5 inhibition on in vivo tumor growth. Proliferation, death, and DNA replication assays were conducted to investigate the cellular biological effects of NUDT5 loss or inhibition. The accumulation of 8-oxo-guanine (8-oxoG) and the induction of γHAX after NUDT5 loss was determined by immunofluorescence staining. The impact of NUDT5 loss on replication fork was assessed by measuring DNA fiber length.
Results: In this study, we demonstrated the significant role of an overexpressed phosphatase, NUDT5, in regulating oxidative DNA damage in TNBCs. Our findings indicate that loss of NUDT5 results in suppressed growth of TNBC both in vitro and in vivo. This growth inhibition is not attributed to cell death, but rather to the suppression of proliferation. The loss or inhibition of NUDT5 led to an increase in the oxidative DNA lesion 8-oxoG, and triggered the DNA damage response in the nucleus. The interference with DNA replication ultimately inhibited proliferation.
Conclusions: NUDT5 plays a crucial role in preventing oxidative DNA damage in TNBC cells. The loss or inhibition of NUDT5 significantly suppresses the growth of TNBCs. These biological and mechanistic studies provide the groundwork for future research and the potential development of NUDT5 inhibitors as a promising therapeutic approach for TNBC patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10845800 | PMC |
http://dx.doi.org/10.1186/s13058-024-01778-w | DOI Listing |
In Silico Pharmacol
December 2024
Department of Bioinformatics, Alagappa University, Karaikudi, 630003 Tamil Nadu India.
Unlabelled: Drug repurposing is necessary to accelerate drug discovery and meet the drug needs. This study investigated the possibility of using fluvoxamine to inhibit the cellular metabolizing enzyme NUDT5 in breast cancer. Computational and experimental techniques were used to evaluate the structural flexibility, binding stability, and chemical reactivity of the drugs.
View Article and Find Full Text PDFCell Biochem Biophys
December 2024
INTI International University, Nilai, Negeri Sembilan, Malaysia.
Breast cancer (BC) is the most prevalent malignancy among women globally and the leading cause of cancer-related mortality. Consequently, there is an urgent need for new, effective treatment strategies for breast cancer. Research has shown that the enzyme nudix hydrolase 5 (NUDT5) plays a critical role in promoting breast cancer aggressiveness and serves as a key regulator of oncogenic pathways.
View Article and Find Full Text PDFPharmaceuticals (Basel)
September 2024
Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
Following the success of mRNA vaccines against COVID-19, mRNA-based therapeutics have now become a great interest and potential. The development of this approach has been preceded by studies of modifications found on mRNA ribonucleotides that influence the stability, translation and immunogenicity of this molecule. The 5' cap of eukaryotic mRNA plays a critical role in these cellular functions and is thus the focus of intensive chemical modifications to affect the biological properties of in vitro-prepared mRNA.
View Article and Find Full Text PDFYi Chuan
September 2024
College of Animal Science and Technology, Northwest A&F University, Yangling 71200, China.
Mol Divers
September 2024
Institute of Nanotechnology, CNR-Nanotec, Via Monteroni, 73100, Lecce, Italy.
NUDIX hydrolase 5 (NUDT5) is an enzyme involved in the hydrolysis of nucleoside diphosphates linked to other moieties, such as ADP-ribose. This cofactor is vital in redox reactions and is essential for the activity of sirtuins and poly(ADP-ribose) polymerases, which are involved in DNA repair and genomic stability. It has been shown that NUDT5 activity can also influence NAD+ homeostasis, thereby affecting cancer cell metabolism and survival.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!