Background: Par-3 Family Cell Polarity Regulator (PARD3) is a cellular protein essential for asymmetric cell division and polarized growth. This study aimed to study the role of PARD3 in hepatic tumorigenesis.

Methods: The essential role of PARD3 in mediating hepatic tumorigenesis was assessed in diet-induced spontaneous liver tumour and syngeneic tumour models. The mechanism of PARD3 was delineated by bulk and single-cell RNA sequencing. The clinical significance of PARD3 was identified by tissue array analysis.

Results: PARD3 was overexpressed in tumour tissues and PARD3 overexpression was positively correlated with high tumour stage as well as the poor prognosis in patients. In models of spontaneous liver cancer induced by choline-deficient, amino acid-defined (CDAA) and methionine-choline-deficient (MCD) diets, upregulation of PARD3 was induced specifically at the tumorigenesis stage rather than other early stages of liver disease progression. Site-directed knockout of PARD3 using an adeno-associated virus 8 (AAV8)-delivered CRISPR/Cas9 single-guide RNA (sgRNA) plasmid blocked hepatic tumorigenesis, while PARD3 overexpression accelerated liver tumour progression. In particular, single-cell sequencing analysis suggested that PARD3 was enriched in primitive tumour cells and its overexpression enhanced tumour-initiating cell (TICs). Overexpression of PARD3 maintained the self-renewal ability of the CD133 TIC population within hepatocellular carcinoma (HCC) cells and promoted the in vitro and in vivo tumorigenicity of CD133 TICs. Transcriptome analysis revealed that Sonic Hedgehog (SHH) signalling was activated in PARD3-overexpressing CD133 TICs. Mechanistically, PARD3 interacted with aPKC to further activate SHH signalling and downstream stemness-related genes. Suppression of SHH signalling and aPKC expression attenuated the in vitro and in vivo tumorigenicity of PARD3-overexpressing CD133 TICs. Tissue array analysis revealed that PARD3 expression was positively associated with the phosphorylation of aPKC, SOX2 and Gli1 and that the combination of these markers could be used to stratify HCC patients into two clusters with different clinicopathological characteristics and overall survival prognoses. The natural compound berberine was selected as a potent suppressor of PARD3 expression and could be used as a preventive agent for liver cancer that completely blocks diet-induced hepatic tumorigenesis in a PARD3-dependent manner.

Conclusion: This study revealed PARD3 as a potential preventive target of liver tumorigenesis via TIC regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10845773PMC
http://dx.doi.org/10.1186/s13046-024-02967-3DOI Listing

Publication Analysis

Top Keywords

pard3
17
liver cancer
12
hepatic tumorigenesis
12
cd133 tics
12
shh signalling
12
sonic hedgehog
8
role pard3
8
spontaneous liver
8
liver tumour
8
tissue array
8

Similar Publications

Intrinsic Muscle Stem Cell Dysfunction Contributes to Impaired Regeneration in the mdx Mouse.

J Cachexia Sarcopenia Muscle

February 2025

Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.

Background: Duchenne muscular dystrophy (DMD) is a devastating disease characterized by progressive muscle wasting that leads to diminished lifespan. In addition to the inherent weakness of dystrophin-deficient muscle, the dysfunction of resident muscle stem cells (MuSC) significantly contributes to disease progression.

Methods: Using the mdx mouse model of DMD, we performed an in-depth characterization of disease progression and MuSC function in dystrophin-deficient skeletal muscle using immunohistology, isometric force measurements, transcriptomic analysis and transplantation assays.

View Article and Find Full Text PDF
Article Synopsis
  • Macropinocytosis is a survival strategy used by cancer cells, especially in nutrient-poor environments, relying heavily on glutamine to sustain themselves, particularly in pancreatic ductal adenocarcinoma (PDAC) cells.
  • The atypical protein kinase C (aPKC) enzymes, specifically PKCζ and PKCι, play a crucial role in regulating macropinocytosis by interacting with scaffold proteins that influence cell structure and function.
  • The research shows that aPKCs enhance macropinocytosis through the relocation of Par3 to microtubules, and their depletion adversely affects cell viability, which can be reversed by restoring macropinocytosis, highlighting the significance of aPKCs in supporting
View Article and Find Full Text PDF

Exiting a germinal zone (GZ) initiates a cascade of events that promote neuronal maturation and circuit assembly. Developing neurons and their progenitors must interpret various niche signals-such as morphogens, guidance molecules, extracellular matrix components, and adhesive cues-to navigate this region. How differentiating neurons integrate and adapt to multiple cell-extrinsic niche cues with their cell-intrinsic machinery in exiting a GZ is unknown.

View Article and Find Full Text PDF

Unravelling the Genetic Architecture of Serum Biochemical Indicators in Sheep.

Genes (Basel)

July 2024

Faculty of Agriculture, Department of Animal Science, Erciyes University, Kayseri 38039, Türkiye.

Serum biochemical indicators serve as vital proxies that reflect the physiological state and functions of different organs. The genetic parameters and molecular mechanisms underlying serum biochemical indicators of sheep () have not been well understood. Therefore, the aim of the present study was to identify the genetic architecture and genomic loci underlying ten serum biochemical indicators in sheep, including alanine transaminase, aspartate transferase, lactate dehydrogenase, cholesterol, glucose, phosphorus, calcium, creatinine, urea and total protein levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!