Background: Acephalic spermatozoa syndrome is a rare type of teratozoospermia causing male infertility due to detachment of the sperm head and flagellum, which precludes fertilization potential. Although loss-of-function variations in several genes, including TSGA10, have been associated with acephalic spermatozoa syndrome, the genetic cause of many cases remains unclear.
Results: We recruited a Pakistani family with two infertile brothers who suffered from acephalic spermatozoa syndrome. Through whole-exome sequencing (WES) followed by Sanger sequencing, we identified a novel missense variant in TSGA10 (c.1112T > C, p. Leu371Pro), which recessively co-segregated with the acephalic spermatozoa syndrome within this family. Ultrastructural analyses of spermatozoa from the patient revealed that 98% of flagellar cross-sections displayed abnormal axonemal ultrastructure, in addition to the head-flagellum detachment. Real-time quantitative PCR analysis revealed almost no detectable TSAG10 mRNA and western blot analysis also failed to detect TSAG10 protein in patient's sperm samples while TSGA10 expression was clearly detected in control samples. Consistently, immunofluorescence analysis demonstrated the presence of TSGA10 signal in the midpiece of sperm from the control but a complete absence of TSGA10 signal in sperm from the patient.
Conclusion: Altogether, our study identifies a novel TSGA10 pathogenic variant as a cause of acephalic spermatozoa syndrome in this family and provides information regarding the clinical manifestations associated with TSGA10 variants in human.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10840149 | PMC |
http://dx.doi.org/10.1186/s12610-024-00220-7 | DOI Listing |
Andrology
December 2024
Reproductive Medicine Center, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
Background: The presence of predominantly headless sperm in semen is a hallmark of acephalic spermatozoa syndrome, which is primarily caused by gene mutations in humans.
Purpose: To identify genetic causes for acephalic spermatozoa syndrome.
Methods: Polymerase chain reaction and Sanger sequencing were performed to define mutations in SUN5 and PMFBP1.
Elife
December 2024
Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
The structural integrity of the sperm is crucial for male fertility, defects in sperm head-tail linkage and flagellar axoneme are associated with acephalic spermatozoa syndrome (ASS) and the multiple morphological abnormalities of the sperm flagella (MMAF). Notably, impaired head-tail coupling apparatus (HTCA) often accompanies defects in the flagellum structure, however, the molecular mechanisms underlying this phenomenon remain elusive. Here, we identified an evolutionarily conserved coiled-coil domain-containing (CCDC) protein, CCDC113, and found the disruption of CCDC113 produced spermatozoa with disorganized sperm flagella and HTCA, which caused male infertility.
View Article and Find Full Text PDFBasic Clin Androl
December 2024
Pharmacy Department, Zhuzhou Central Hospital, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 410120, China.
Background: Acephalic spermatozoa syndrome is a rare but severe type of teratozoospermia. The familial trait of acephalic spermatozoa syndrome suggests that genetic factors play an important role. However, known mutations account for only some acephalic spermatozoa syndrome patients, and more studies are needed to elucidate its pathogenesis.
View Article and Find Full Text PDFJ Assist Reprod Genet
November 2024
Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.
Biol Reprod
January 2025
Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!