Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Lymphedema is a common complication of cancer treatment, such as lymphadenectomy and radiation therapy. It is a debilitating condition with pathologic tissue changes that hinder effective curative treatment and jeopardize patients' quality of life. Various attempts to prevent the development of lymphedema have been made, with improvements in the incidence of the pathology. However, it is still prevalent among survivors of cancer. In this paper, we review both molecular therapeutics and immediate surgical lymphatic reconstruction as treatment strategies after lymphadenectomy. Specifically, we discuss pro-lymphangiogenic molecules that have proved efficient in animal models of lymphedema and clinical trials, and review currently available microsurgical techniques of immediate lymphatic reconstruction.
Methods: A literature search was conducted in PubMed, Embase, Cochrane Library, and Google Scholar through May 2022. Searches were done separately for molecular therapeutics and microsurgical techniques for immediate lymphatic reconstruction. Search terms used for (1) non-surgical methods include 'lymphangiogenesis,' 'lymphedema,' 'growth factor,' and 'gene therapy.' Search terms used for (2) surgical methods include 'lymphedema,' 'lymph node excision,' 'lymphatic vessels,' 'primary prevention,' and 'microsurgery.'
Results: Various pro-lymphangiogenic factors with therapeutic potential include VEGF-C, VEGF-D, HGF, bFGF, PDGF, IGF, Retinoic acid, Ang-1, S1P, TLR4, and IL-8. Microsurgical lymphatic reconstruction for prevention of secondary lymphedema includes lymphovenous anastomosis, vascularized lymph node flap transfer, and lymph-interpositional flap transfer, with promising clinical outcomes.
Conclusions: With growing knowledge of the lymphangiogenic pathway and lymphedema pathology and advances in microsurgical techniques to restore lymphatic channels, molecular and surgical approaches may represent a promising method for primary prevention of lymphedema.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523459 | PMC |
http://dx.doi.org/10.1016/j.jvsv.2024.101844 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!