Protective effects of Prussian blue nanozyme against sepsis-induced acute lung injury by activating HO-1.

Eur J Pharmacol

School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, P.R. China; Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, P.R. China. Electronic address:

Published: April 2024

Sepsis is a life-threatening condition involving dysfunctional organ responses stemming from dysregulated host immune reactions to various infections. The lungs are most prone to failure during sepsis, resulting in acute lung injury (ALI). ALI is associated with oxidative stress and inflammation, and current therapeutic strategies are limited. To develop a more specific treatment, this study aimed to synthesise Prussian blue nanozyme (PBzyme), which can reduce oxidative stress and inflammation, to alleviate ALI. PBzyme with good biosafety was synthesised using a modified hydrothermal method. PBzyme was revealed to be an activator of haem oxygenase-1 (HO-1), improving survival rate and ameliorating lung injury in mice. Zinc protoporphyrin, an inhibitor of HO-1, inhibited the prophylactic therapeutic efficacy of PBzyme on ALI, and affected the nuclear factor-κB signaling pathway and activity of HO-1. This study demonstrates that PBzyme can alleviate oxidative stress and inflammation through HO-1 and has a prophylactic therapeutic effect on ALI. This provides a new strategy and direction for the clinical treatment of sepsis-induced ALI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2024.176354DOI Listing

Publication Analysis

Top Keywords

lung injury
12
oxidative stress
12
stress inflammation
12
prussian blue
8
blue nanozyme
8
acute lung
8
prophylactic therapeutic
8
ali
6
ho-1
5
pbzyme
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!