Carbohydrates, in particular the d-enantiomers of ribose, 2-deoxyribose, and glucose, are essential to life's informational biopolymers (RNA/DNA) and for supplying energy to living cells through glycolysis. Considered to be potential biosignatures in the search of past or present life, our capacity to detect and quantify these essential sugars is crucial for future space missions to the Moon, Mars or Titan as well as for sample-return missions. However, the enantioselective analysis of carbohydrates is challenging and both research and routine applications, are lacking efficient methods that combine highly sensitive and reproducible detection with baseline enantioselective resolution and reliable enantiomeric excess (ee) measurements. Here, we present four different derivatization strategies in combination with multidimensional gas chromatography coupled to a reflectron time-of-flight mass spectrometer (GC×GC-TOF-MS) for the enantioselective resolution of C3 to C6 carbohydrates potentially suitable for sample-return analyses. Full mass spectral interpretation and calibration curves for one single-step (cyclic boronate derivatives) and three two-step derivatization protocols (aldononitrile-acetate, hemiacetalization-trifluoroacetylation, and hemiacetalization-permethylation) are presented for concentrations ranging from 1 to 50 pmol μL⁻ with correlation coefficients R > 0.94. We compared several analytical parameters including reproducibility, sensitivity (LOD and LOQ), overall separation, chiral resolution (R), mass spectrum selectivity, stability during long term storage, and reliability of ee measurements to guide the application-dependent selection of optimal separation and quantification performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2024.125728 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!