Locally resonant phononic crystal (LRPC) exhibit elastic wave band gap characteristics within a specific low-frequency range, but their band gap width is relatively narrow, which has certain limitations in practical engineering applications. In order to open a lower frequency band gap and broaden the band gap range, this paper proposes a new composite multiple locally resonant phononic crystal (CMLRPC). Firstly, the band structure of the CMLRPC is calculated by using the finite element method, and then the formation mechanism of the band gap of the CMLRPC is studied by analyzing its vibration mode, and the band gap width is expanded by adjusting the size of the single primitive cell in the supercell model of the CMLRPC. Secondly, an equivalent mass-spring system model for CMLRPC is established to calculate the starting frequency and cut-off frequency of the band gap, and the calculated results are in good agreement with the finite element calculation. Finally, the frequency response function of the CMLRPC is calculated and its attenuation characteristics are analyzed. Within the band gap frequency range, the attenuation values of the CMLRPC are mostly above 20 dB, indicating a good attenuation effect. Compared with traditional LRPC, this new CMLRPC opens multiple band gaps in the frequency range of 200 Hz, with a wider band gap width and better attenuation effect. In addition, considering both the contact between single primitive cell and the adjustment of their spacing in the supercell model of the CMLRPC, lower and wider band gap can be obtained. The research results of this paper provide a new design idea and method for obtaining low-frequency band gap in LRPC, and can provide reference for the design of vibration reduction and isolation structures in the field of low-frequency vibration control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ad266e | DOI Listing |
Sci Rep
January 2025
Department of Physics, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
In this study, biopolymer composites based on chitosan (CS) with enhanced optical properties were functionalized using Manganese metal complexes and black tea solution dyes. The results indicate that CS with Mn-complexes can produce polymer hybrids with high absorption, high refractive index and controlled optical band gaps, with a significant reduction from 6.24 eV to 1.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Khalifa University, Abu Dhabi, United Arab Emirates.
The current research aims to determine the impact of orange peel dye (OPD), an eco-friendly addition, on the optical properties of biodegradable polymers. This study investigates the enhancement of optical properties in solid electrolytes based on chitosan (CS) and glycerol, with varying OPD concentrations. UV-Vis-NIR spectroscopy revealed significantly enhanced UV-visible light absorption in the 200-500 nm region and effective UV light blocking.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea. Electronic address:
Band topology has emerged as a novel tool for material design across various domains, including photonic and phononic systems, and metamaterials. A prominent model for band topology is the Su-Schrieffer-Heeger (SSH) chain, which reveals topological in-gap states within Bragg-type gaps (BG) formed by periodic modification. Apart from classical BGs, another mechanism for bandgap formation in metamaterials involves strong coupling between local resonances and propagating waves, resulting in a local resonance-induced bandgap (LRG).
View Article and Find Full Text PDFSensors (Basel)
January 2025
Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, China.
The trace detection of pyocyanin (PCN) is crucial for infection control, and electrochemical sensing technology holds strong potential for application in this field. A pivotal challenge in utilizing carbon materials within electrochemical sensors lies in constructing carbon-based films with robust adhesion. To address this issue, a novel composite hydrogel consisting of multi-walled carbon nanotubes/polyvinyl alcohol/phosphotungstic acid (MWCNTs/PVA/PTA) was proposed in this study, resulting in the preparation of a highly sensitive and stable PCN electrochemical sensor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!