Escherichia coli is the most common microorganism causing nosocomial or community-acquired bacteremia, and extended-spectrum β-lactamase-producing Escherichia coli isolates are identified worldwide with increasing frequency. For this reason, it is necessary to evaluate potential new molecules like antimicrobial peptides. They are recognized for their biological potential which makes them promising candidates in the fight against infections. The goal of this research was to evaluate the potential of the synthetic peptide ΔM3 on several extended-spectrum β-lactamase producing E. coli isolates. The antimicrobial and cytotoxic activity of the peptide was spectrophotometrically determined. Additionally, the capacity of the peptide to interact with the bacterial membrane was monitored by fluorescence microscopy and infrared spectroscopy. The results demonstrated that the synthetic peptide is active against Escherichia coli isolates at concentrations similar to Meropenem. On the other hand, no cytotoxic effect was observed in HaCaT keratinocyte cells even at 10 times the minimal inhibitory concentration. Microscopy results showed a permeabilizing effect of the peptide on the bacteria. The infrared results showed that ΔM3 showed affinity for the lipids of the microorganism's membrane. The results suggest that the ∆M3 interacts with the negatively charged lipids from the E. coli by a disturbing effect on membrane. Finally, the secondary structure experiments of the peptide showed a random structure in solution that did not change during the interaction with the membranes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11006780PMC
http://dx.doi.org/10.1007/s00232-024-00306-3DOI Listing

Publication Analysis

Top Keywords

escherichia coli
16
coli isolates
16
synthetic peptide
8
extended-spectrum β-lactamase
8
evaluate potential
8
peptide
6
coli
6
study membrane
4
membrane activity
4
activity synthetic
4

Similar Publications

Metals have been used throughout history to manage disease. With the rising incidence of antibiotic-resistant bacterial strains, metal-based antimicrobials (MBAs) have re-emerged as an alternative to combat infections. Gallium nitrate has shown promising efficacy against several pathogens.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is an increasing problem worldwide, and new treatment options for bacterial infections are direly needed. Engineered probiotics show strong potential in treating or preventing bacterial infections. However, one concern with the use of live bacteria is the risk of the bacteria acquiring genes encoding for AMR or virulence factors through horizontal gene transfer (HGT), and the transformation of the probiotic into a superbug.

View Article and Find Full Text PDF

Many bacteriophages modulate host transcription to favor expression of their own genomes. Phage satellite P4 polarity suppression protein, Psu, a building block of the viral capsid, inhibits hexameric transcription termination factor, ρ, by presently unknown mechanisms. Our cryogenic electron microscopy structures of ρ-Psu complexes show that Psu dimers clamp two inactive, open ρ rings and promote their expansion to higher-oligomeric states.

View Article and Find Full Text PDF

The role of ribosomal protein networks in ribosome dynamics.

Nucleic Acids Res

January 2025

Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS, Université Paris Diderot, 8, Pace Aurélie Nemours, 75013 Paris, France.

Accurate protein synthesis requires ribosomes to integrate signals from distant functional sites and execute complex dynamics. Despite advances in understanding ribosome structure and function, two key questions remain: how information is transmitted between these distant sites, and how ribosomal movements are synchronized? We recently highlighted the existence of ribosomal protein networks, likely evolved to participate in ribosome signaling. Here, we investigate the relationship between ribosomal protein networks and ribosome dynamics.

View Article and Find Full Text PDF

Drivers of extended spectrum β-lactamase (ESBL)-producing Enterobacterales colonization among residents of long-term health care facilities: a European multicentric prospective cohort study.

J Hosp Infect

January 2025

Infectious Diseases, Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany; Infectious Diseases, Dept of Diagnostic and Public Health, University Hospital Verona, Verona, Italy; DZIF-Clinical Research Unit, Infectious Diseases, Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany.

Background: ESBL-producing Enterobacterales (ESBL-PE) are highly prevalent in long-term healthcare (LTCF) settings. In order to estimate the acquisition rate of ESBL-producing Escherichia coli and Klebsiella pneumoniae in LTCF settings and identify clinical and environmental risk factors, a multicentric, prospective cohort study was conducted in six LTCFs in Germany, France, Spain and the Netherlands.

Methods: Longitudinal screening of residents was performed over 32 weeks, collecting epidemiological and clinical data and environmental samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!