Passive radiative cooling (PRC) that realizes thermal management without consuming any energy has attracted increasing attention. Unfortunately, polymer fibers with radiative cooling function fabricated a facile, continuous, large-scale and eco-friendly method have been scarcely reported. Herein, polyethylene fibers containing directional microchannels (PFCDM) are facilely fabricated melt extrusion and water leaching. Interestingly, fabric based on such hydrophobic PFCDM shows high sunlight reflectivity (93.6%), and mid-infrared emissivity (93.9%), endowing it with remarkable PRC performance. Compared with other reported examples, the as-prepared PFDCM fabric has the highest cooling power (, 104.285 W m) and temperature drop (, 27.71 °C). Furthermore, decent self-cleaning performance can keep the PFCDM fabric away from contamination and enable it to retain an excellent radiative cooling effect. The method proposed to fabricate PFCDM in this paper will widen the potential application of thermoplastic polyolefins in the field of radiative cooling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3mh01881d | DOI Listing |
Small
January 2025
School of Mechanical Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
Passive temperature controls like passive daytime radiative cooling (PDRC)-heating (PDRH), and thermal insulation are essential to meet the growing demand for energy-efficient thermal solutions. When combined with advanced functions like electromagnetic interference shielding, these technologies can significantly enhance scalability. However, existing approaches using single thin films or uniform porous materials face inherent limitations in optimizing versatile functions, while lightweight, insulating aerogels can extend their multifunctionality by manipulating pores and fillers.
View Article and Find Full Text PDFMater Horiz
January 2025
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
Adaptive control of solar light based on an optical switching strategy is essential to tune thermal gain, while real-time solar regulation and hence on-demand thermal management coupled with dynamic conditions still faces a formidable challenge. Herein, we develop a stacking structure which is mechanosensitive and can be finely tuned depending on the dynamic cavitation effect. Specifically, the stacking structure transfers from a solid monolith state to porous layered state progressively under mechanical stretching, and the resulting porous layered state gradually goes back to the solid monolith state once the load is released.
View Article and Find Full Text PDFACS Omega
December 2024
School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China.
Solar photovoltaic (PV) conversion has become a key area in today's energy supply. However, incomplete utilization of the PV cell bandgap results in the conversion of photon energy outside the bandgap into waste heat, reducing the overall efficiency. Improving spectral utilization efficiency and mitigating the effects of PV waste heat are top priorities.
View Article and Find Full Text PDFAdv Mater
January 2025
Hangzhou Institute of Technology, Xidian University, Hangzhou, 311231, P. R. China.
Environmentally induced sensor temperature fluctuations can distort the outputs of a sensor, reducing their stability during long-term health monitoring. Here, a passive isothermal flexible sensor is proposed by using hierarchical cellulose aerogel (HCA) as the top tribonegative layer, which allows the sensor to adapt dynamic thermal environments through both radiative cooling and heat insulation. The radiative cooling effect can cool down the temperatures of a sensor in summer, while the hollow microfibers in HCA provide ultralow thermal conductivity to reduce internal heat loss in winter.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China.
The record-breaking 2019-2020 Australian wildfires have been primarily linked to climate change and its internal variability. However, the meteorological feedback mechanisms affecting smoke dispersion and wildfire emissions on a synoptic scale remain unclear. This study focused on the largest wildfires occurring between December 25, 2019 and January 10, 2020, under the enhanced subtropical high, when the double peak in wildfire evolution was favored by sustained low humidity and two synchronous increases in temperature and wind.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!