The coupling of electronic and nuclear motion in polyatomic molecules is at the heart of attochemistry. The molecular properties, transient structures, and reaction mechanism of these many-body quantum objects are defined on the level of electrons and ions by molecular wave functions and their coherent superposition, respectively. In the present contribution, we monitor nonadiabatic quantum wave packet dynamics during molecular charge motion by reconstructing both the oscillatory charge density distribution and the characteristic time-dependent nuclear configuration coordinate from time-resolved Auger electron spectroscopic data recorded in previous studies on glycine molecules [Schwickert et al. , 8, eabn6848]. The electronic and nuclear motion on the femtosecond time scale was induced and probed in kinematically complete soft X-ray experiments at the FLASH free-electron laser facility. The detailed analysis of amplitude, instantaneous phase, and instantaneous frequency of the propagating many-body wave packet during its lifecycle provides unprecedented insight into dynamical processes beyond the Born-Oppenheimer approximation. We are confident that the refined experimental data evaluation helps to develop new theoretical tools to describe time-dependent molecular wave functions in complicated but ubiquitous non-Born-Oppenheimer photochemical conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10875660PMC
http://dx.doi.org/10.1021/acs.jpca.3c06517DOI Listing

Publication Analysis

Top Keywords

soft x-ray
8
electronic nuclear
8
nuclear motion
8
molecular wave
8
wave functions
8
wave packet
8
coupled electron-nuclear
4
electron-nuclear dynamics
4
dynamics induced
4
induced monitored
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!