Composition-tunable transition metal dichalcogenide nanosheets a scalable, solution-processable method.

Nanoscale Horiz

Laboratory for Molecular Engineering of Optoelectronic Nanomaterials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

Published: March 2024

The alloying of two-dimensional (2D) transition metal dichalcogenides (TMDs) is an established route to produce robust semiconductors with continuously tunable optoelectronic properties. However, typically reported methods for fabricating alloyed 2D TMD nanosheets are not suitable for the inexpensive, scalable production of large-area (m) devices. Herein we describe a general method to afford large quantities of compositionally-tunable 2D TMD nanosheets using commercially available powders and liquid-phase exfoliation. Beginning with MoWS nanosheets, we demonstrate tunable optoelectronic properties as a function of composition. We extend this method to produce MoWSe MoSSe, WSSe, and quaternary MoWSSe nanosheets. High-resolution scanning transmission electron microscopy (STEM) imaging confirms the atomic arrangement of the nanosheets, while an array of spectroscopic techniques is used to characterize the chemical and optoelectronic properties. This transversal method represents an important step towards upscaling tailored TMD nanosheets with a broad range of tunable optoelectronic properties for large-area devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10962636PMC
http://dx.doi.org/10.1039/d3nh00477eDOI Listing

Publication Analysis

Top Keywords

optoelectronic properties
16
tunable optoelectronic
12
tmd nanosheets
12
transition metal
8
large-area devices
8
nanosheets
7
composition-tunable transition
4
metal dichalcogenide
4
dichalcogenide nanosheets
4
nanosheets scalable
4

Similar Publications

Efficient circularly polarized luminescence (CPL) optical waveguides have significant potential for advancing photonic and optoelectronic devices. However, the development of CPL optical waveguides materials (OWMs) with low optical loss coefficient remains a considerable challenge. To overcome this, we design and synthesize CPL OWMs based on room-temperature phosphorescent liquid crystalline polymers (LCPs).

View Article and Find Full Text PDF

Y-27632 and dual media culture approach promote the construction and transplantation of rabbit limbal epithelial cell sheets via cell spheroid culture and auto-bioprinting.

Acta Biomater

January 2025

Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China; Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China; Aier School of Ophthalmology, Central South University, Changsha, China. Electronic address:

The shortage of corneal donors and the limitations in tissue engineering grafts, such as biocompatibility and mechanical properties, pose significant challenges in corneal transplantation. Here, for the first time, we investigate the effect of Rho kinase inhibitor Y-27632 and a dual media culture approach, including proliferative media (M1) and stabilizing media (M2), on rabbit limbal epithelial stem cells (LESCs), aiming to explore the feasibility of constructing corneal cell sheets in vitro through auto-bioprinting and assessing their corneal wound healing capacity in vivo. Y-27632 has primarily demonstrated significantly enhanced LESCs growth, proliferation, and reduced apoptosis.

View Article and Find Full Text PDF

Efficient, non-destructive and real-time meat freshness assessment has always been a hot research topic. This paper presents a novel approach for detecting lamb meat freshness using a flexible optoelectronic sensing system combined with an integrated learning model. We developed a flexible impedance sensing system and a flexible optical sensing system through laser direct writing and transfer technology.

View Article and Find Full Text PDF

Sequential addition of cations increases photoluminescence quantum yield of metal nanoclusters near unity.

Nat Commun

January 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, P. R. China.

Photoluminescence is one of the most intriguing properties of metal nanoclusters derived from their molecular-like electronic structure, however, achieving high photoluminescence quantum yield (PLQY) of metal core-dictated fluorescence remains a formidable challenge. Here, we report efficient suppression of the total structural vibrations and rotations, and management of the pathways and rates of the electron transfer dynamics to boost a near-unity absolute PLQY, by decorating progressive addition of cations. Specifically, with the sequential addition of Zn, Ag, and Tb into the 3-mercaptopropionic acids capped Au nanoclusters (NCs), the low-frequency vibration of the metal core progressively decreases from 144.

View Article and Find Full Text PDF

An engineered adeno-associated virus mediates efficient blood-brain barrier penetration with enhanced neurotropism and reduced hepatotropism.

J Control Release

January 2025

Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074 Wuhan, PR China; Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, PR China; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071 Wuhan, PR China; Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, PR China. Electronic address:

The blood-brain barrier (BBB) is a formidable barrier that restricts the entry of substances into the brain, complicating the study of brain function and the treatment of neurological conditions. Traditional methods of delivering genes from the periphery to the central nervous system (CNS) using adeno-associated viruses (AAVs) often require high doses, which can trigger immune responses and hepatotoxicity. Here, we developed a new AAV variant named AAVhu.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!