It has been commonly believed that the ordered thermoplastic elastomers formed by the ABC triblock copolymer should have better mechanical performance than that by the ABA counterpart due to the higher bridging fraction. However, the thermoplastic elastomer of ABA was often observed to perform better than that of ABC. To compare the performance of two kinds of thermoplastic elastomers and unveil the underlying microscopic mechanism, we have calculated their stress-strain curves using coarse-grained molecular dynamics simulations in conjunction with self-consistent field theory. It is revealed that the stretching degree of the bridging blocks and the network connectivity play important roles in determining the mechanical properties in addition to the bridging fraction. The higher degree in the stretching of bridging blocks and network connectivity of the structure formed by the ABA triblock copolymer enables its superior mechanical performance over the ABC block copolymer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.3c00741 | DOI Listing |
J Chem Phys
January 2025
Université Paris-Saclay, UVSQ, CNRS, GEMaC, 45 Avenue des Etats Unis, 78035 Versailles, France.
Among the large family of spin-crossover (SCO) solids, recent investigations focused on polynuclear SCO materials, whose specific molecular configurations allow the presence of multi-step transitions and elastic frustration. In this contribution, we develop the first elastic modeling of thermal and dynamical properties of trinuclear SCO solids. For that, we study a finite SCO open chain constituted of successive elastically coupled trinuclear (A=B=C) blocks, in which each site (A, B, and C) may occupy two electronic configurations, namely, low-spin (LS) and high-spin (HS) states, accompanied with structural changes.
View Article and Find Full Text PDFFront Vet Sci
December 2024
State Key Laboratory of Mariculture Breeding, Engineering Research Centre of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China.
is a common bacterial pathogen in aquaculture, often leading to visceral white spot disease in large yellow croakers (). Previous studies have found that certain aptamers show an efficient antibacterial effect against this pathogen. In this study, we analyzed the transcriptome of to get insights into the antibacterial and inhibitions mechanisms following exposure to the aptamer B4.
View Article and Find Full Text PDFJ Virol
January 2025
Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China.
Unlabelled: Platelet factor 4 (PF4) has been shown to regulate several viral infections. Our previous study demonstrated that PF4 inhibits the entry of enterovirus A 71 (EV71) and coxsackievirus A16 (CA16), which cause hand, foot, and mouth disease (HFMD). In this study, we report that PF4 also inhibits the circulating HFMD pathogen coxsackievirus A6 (CA6) and the re-emerging enterovirus D68 (EVD68).
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.
Leuk Res
December 2024
Ankara Yıldırım Beyazıt University, Hematology Clinic, Ankara, Turkey.
CD47 interacts with signal regulatory protein alpha (SIRPα) on macrophages to deliver an anti-phagocytic signal, enabling tumor cells to evade immune destruction. This study explores the relationship between CD47 and SIRPα expression and key clinical prognostic factors, microvascular density (MVD), and tumor-infiltrating lymphocytes (TIL) in Diffuse Large B Cell Lymphoma (DLBCL) cases. We analyzed tissue samples from 122 DLBCL cases using tissue microarray (TMA) blocks and immunohistochemical staining for CD47, SIRPα, CD31, and CD3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!