Detecting horizontal gene transfer with metagenomics co-barcoding sequencing.

Microbiol Spectr

Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.

Published: March 2024

Horizontal gene transfer (HGT) is the process through which genetic information is transferred between different genomes and that played a crucial role in bacterial evolution. HGT can enable bacteria to rapidly acquire antibiotic resistance and bacteria that have acquired resistance is spreading within the microbiome. Conventional methods of characterizing HGT patterns include short-read metagenomic sequencing (short-reads mNGS), long-read sequencing, and single-cell sequencing. These approaches present several limitations, such as short-read fragments, high amounts of input DNA, and sequencing costs, respectively. Here, we attempt to circumvent present limitations to detect HGT by developing a metagenomics co-barcode sequencing workflow (MECOS) and applying it to the human and mouse gut microbiomes. In addition to that, we have over 10-fold increased contig length compared to short-reads mNGS; we also obtained exceeding 30 million paired reads with co-barcode information. Applying the novel bioinformatic pipeline, we integrated this co-barcoding information and the context information from long reads, and observed over 50-fold HGT events after we corrected the potential wrong HGT events. Specifically, we detected approximately 3,000 HGT blocks in individual samples, encompassing ~6,000 genes and ~100 taxonomic groups, including loci conferring tetracycline resistance through ribosomal protection. MECOS provides a valuable tool for investigating HGT and advance our understanding on the evolution of natural microbial communities within hosts.IMPORTANCEIn this study, to better identify horizontal gene transfer (HGT) in individual samples, we introduce a new co-barcoding sequencing system called metagenomics co-barcoding sequencing (MECOS), which has three significant improvements: (i) long DNA fragment extraction, (ii) a special transposome insertion, (iii) hybridization of DNA to barcode beads, and (4) an integrated bioinformatic pipeline. Using our approach, we have over 10-fold increased contig length compared to short-reads mNGS, and observed over 50-fold HGT events after we corrected the potential wrong HGT events. Our results indicate the presence of approximately 3,000 HGT blocks, involving roughly 6,000 genes and 100 taxonomic groups in individual samples. Notably, these HGT events are predominantly enriched in genes that confer tetracycline resistance via ribosomal protection. MECOS is a useful tool for investigating HGT and the evolution of natural microbial communities within hosts, thereby advancing our understanding of microbial ecology and evolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913427PMC
http://dx.doi.org/10.1128/spectrum.03602-23DOI Listing

Publication Analysis

Top Keywords

hgt events
20
hgt
14
horizontal gene
12
gene transfer
12
co-barcoding sequencing
12
short-reads mngs
12
individual samples
12
metagenomics co-barcoding
8
sequencing
8
transfer hgt
8

Similar Publications

Dating the origin of a viral domestication event in parasitoid wasps attacking Diptera.

Proc Biol Sci

January 2025

Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne F-69622, France.

Over the course of evolution, hymenopteran parasitoids have developed a close relationship with heritable viruses, sometimes integrating viral genes into their chromosomes. For example, in parasitoids belonging to the genus, 13 viral genes from the family have been domesticated to deliver immunosuppressive factors to host immune cells, thereby protecting parasitoid offspring from the host immune response. The present study aims to comprehensively characterize this domestication event in terms of the viral genes involved, the wasp diversity affected by this event and its chronology.

View Article and Find Full Text PDF

Beetles that feed on the nutritionally depauperate and recalcitrant tissues provided by the leaves, stems, and roots of living plants comprise one-quarter of herbivorous insect species. Among the key adaptations for herbivory are plant cell wall-degrading enzymes (PCWDEs) that break down the fastidious polymers in the cell wall and grant access to the nutritious cell content. While largely absent from the non-herbivorous ancestors of beetles, such PCWDEs were occasionally acquired via horizontal gene transfer (HGT) or by the uptake of digestive symbionts.

View Article and Find Full Text PDF

Background: Fabry disease is an X-linked lysosomal storage disorder due to a deficiency of α-galactosidase A (α-gal A) activity. Our goal was to correct the enzyme deficiency in Fabry patients by transferring the cDNA for α-gal A into their CD34+ hematopoietic stem/progenitor cells (HSPCs). Overexpression of α-gal A leads to secretion of the hydrolase; which can be taken up and used by uncorrected bystander cells.

View Article and Find Full Text PDF

CRISPR-Cas spacer acquisition is a rare event in human gut microbiome.

Cell Genom

January 2025

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA. Electronic address:

Host-parasite relationships drive the evolution of both parties. In microbe-phage dynamics, CRISPR functions as an adaptive defense mechanism, updating immunity via spacer acquisition. Here, we investigated these interactions within the human gut microbiome, uncovering low frequencies of spacer acquisition at an average rate of one spacer every ∼2.

View Article and Find Full Text PDF

Microbial communities that maintain symbiotic relationships with animals evolve by adapting to the specific environmental niche provided by their host, yet understanding their patterns of speciation remains challenging. Whether bacterial speciation occurs primarily through allopatric or sympatric processes remains an open question. In addition, patterns of DNA transfers, which are pervasive in bacteria, are more constrained in a closed host-gut system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!