The development of the proton exchange membrane water electrolyzer (PEMWE) is still limited by the prohibitive cost and scarcity of iridium (Ir)-based oxygen evolution reaction (OER) catalyst. This work presents a novel catalyst synthesized by precursor-atomization and rapid joule-heating method, successfully doping iridium atoms into polyvalent tungsten blends (W, W, W) based on titanium substrate. The vacancy engineering of unsaturated tungsten oxide (W, W) reconstructs the electronic structure of the catalyst surface, which resulting in the low-valence state iridium species, avoiding excessive oxidation of iridium and accelerating the catalytic kinetics. Meanwhile, metallic tungsten (W) improves the conductivity of catalyst and guarantees the stable existence of oxygen vacancy. The TiIrWO possesses excellent performance in acidic OER catalysis, requiring overpotential of only 181 mV to drive 10.0 mA cm, and exhibiting a high mass activity of 753 A g at an overpotential of 300 mV. The membrane electrode assembly (MEA) with TiIrWO as anode electrocatalyst can reduce the Ir consumption amount by >60% compared to commercial IrO, and it can operated over 120 h at a current density of 1.0 A cm.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202301419DOI Listing

Publication Analysis

Top Keywords

iridium
5
multivalence-state tungsten
4
tungsten species
4
species facilitated
4
facilitated iridium
4
iridium loading
4
loading robust
4
robust acidic
4
acidic water
4
water oxidation
4

Similar Publications

Selective detection of mitochondrial Cu in living cells by a near-infrared iridium(III) complex.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China. Electronic address:

The widespread use of copper (Cu) has raised concerns about environmental pollution and adverse effects on human health, highlighting the need to develop copper detection methods. Developing near-infrared (NIR) luminescent probes for imaging subcellular Cu is still a challenge. In this work, we have developed a luminescence probe based on a NIR iridium(III) complex, which rapidly detects Cu by combining salicylaldehyde and amine groups through a simple Schiff base reaction on the N^N ligand.

View Article and Find Full Text PDF

Pure Mg Cathode for Highly Efficient Single-Layer Organic Light-Emitting Diodes.

ACS Appl Mater Interfaces

December 2024

Center for Optoelectronics Engineering Research, School of Physics and Astronomy, Yunnan University, Kunming 650500, China.

Highly efficient single-layer organic light-emitting diodes (OLEDs) are demonstrated by using a pure Mg cathode that is seeded with a small amount of Ag nucleation sites. Bis(4-phenylthieno[3,2-]pyridinato-,C2')(acetylacetonate)iridium(III) (PO-01)-doped devices with three-, two-, and one-region doping configurations exhibit maximum external quantum efficiency (EQE) values of 22.8%, 21.

View Article and Find Full Text PDF

Single compounds displaying a wide range of luminescent colors are attractive optical materials for sensor applications. In this study, we present the beneficial combination of a cyclometalated iridium(III) complex scaffold and boronic acid units for designing stimuli-responsive luminescent materials with various emission colors. Five iridium(III) complexes bearing a diboronic acid ligand (bpyB2) were synthesized: Ir(C^N)bpyB2 (C^N = 2-phenylpyridine (1), 2-(2,4-difluorophenyl)pyridine (2), 2-(4-methoxyphenyl)pyridine (3), benzo[h]quinoline (4), 1-phenylisoquinoline (5)).

View Article and Find Full Text PDF

Hypochlorous acid(HClO)/hypochlorite ion (ClO-) is a highly reactive oxygen species (ROS) that play a crucial role in various biological processes. In this paper, a "turn-on" phosphorescent probe (Ir-TPP) for detecting ClO- in mitochondria was designed and synthesized. In solution, Ir-TPP is minimal emission due to rapid isomerization of C=N-OH as an efficient non-radiative decay process.

View Article and Find Full Text PDF

Nonemissive Iridium(III) Solvent Complex as a Self-Reporting Photosensitizer for Monitoring Phototherapeutic Efficacy in a "Signal on" Mode.

Chem Biomed Imaging

December 2024

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.

Photodynamic therapy (PDT) has long been receiving increasing attention for the minimally invasive treatment of cancer. The performance of PDT depends on the photophysical and biological properties of photosensitizers (PSs). The always-on fluorescence signal of conventional PSs makes it difficult to real-time monitor phototherapeutic efficacy in the PDT process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!