Using three common polymeric materials (polypropylene (PP), polytetrafluoroethylene (PTFE) and polycaprolactone (PCL)), a standard oxygen-plasma treatment and atomic force microscopy (AFM), we performed a scaling analysis of the modified surfaces yielding effective Hurst exponents ( ≃ 0.77 ± 0.02 (PP), ≃0.75 ± 0.02 (PTFE), and ≃0.83 ± 0.02 (PCL)), for the one-dimensional profiles, corresponding to the transversal sections of the surface, by averaging over all possible profiles. The surface fractal dimensions are given by = 3 - , corresponding to ≃ 2.23, 2.25, and 2.17, respectively. We present a simple method to obtain the surface area from the AFM images stored in a matrix of 512 × 512 pixels. We show that the considerable increase found in the surface areas of the treated samples w.r.t. to the non-treated ones (43% for PP, 85% for PTFE, and 25% for PCL, with errors of about 2.5% on samples of 2 µm × 2 µm) is consistent with the observed increase in the length scales of the fractal regime to determine , typically by a factor of about 2, extending from a few to hundreds of nanometres. We stipulate that the intrinsic roughness already present in the original non-treated material surfaces may serve as 'fractal' seeds undergoing significant height fluctuations during plasma treatment, suggesting a pathway for the future development of advanced material interfaces with large surface areas at the nanoscale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3sm01497e | DOI Listing |
Int J Pharm X
June 2025
Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
Thermoplastic polymers provide a versatile platform to mimic various aspects of physiological extracellular matrix properties such as chemical composition, stiffness, and topography for use in cell and tissue engineering applications. In this review, we provide a brief overview of the most promising thermoplastic polymers, and in particular the thermoplastic polyesters, such as poly(lactic acid), poly(glycolic acid), and polycaprolactone, and the thermoplastic elastomers, such as polyurethanes, polyhydroxyalkanoates, and poly(butyl cyanoacrylate). A particular focus has been made on the synthesis processes, the processability and the biocompatibility.
View Article and Find Full Text PDFChemphyschem
January 2025
Changchun University of Technology, No. 3000, Beiyuanda Street, Gaoxinbei District, Changchun, Jilin, China, CHINA.
With the rapid advancement of information technology, the need to achieve ultra-high-density data storage has become a pressing necessity. This study synthesized three hyperbranched polyimides (HBPI-TAPP, HBPI-(Zn)TAPP, and HBPI-(Cu)TAPP) by polymerizing 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP), which features a cavity for metal ion coordination, with 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), to systematically investigate the effect of metal ion species on storage performance. According to the results, memory devices based on HBPI-(Zn)TAPP exhibit volatile SRAM (static random-access memory) characteristics, whereas devices employing HBPI-TAPP and HBPI-(Cu)TAPP demonstrate non-volatile WORM (write-once, read-many) characteristics.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China.
The demand for insulating materials with superior dielectric properties has increased. Among these materials, polymers containing cyclic structure including cyclic olefin copolymer (COC) and cyclic olefin polymer (COP) stand out because of their excellent dielectric properties originating from the pure hydrocarbon structure. Introducing fluorine into polymers is one efficient strategy for optimizing the dielectric and the related important properties.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, 77843, USA.
Organelles are specialized subunits within cells which carry out vital functions crucial to cellular survival and form a tightly regulated network. Dysfunctions in any of these organelles are linked to numerous diseases impacting virtually every organ system in the human body. Targeted delivery of therapeutics to specific organelles within the cell holds great promise for overcoming challenging diseases and improving treatment outcomes through the minimization of therapeutic dosage and off-target effects.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China.
Metallic vanadium is innovatively introduced for a superior aqueous zinc-ion battery cathode material, which is activated through dissolution-deposition transition to amorphous VO·3HO and delivers an excellent capacity of 610 mA h g at 0.1 A g and remarkable capacity retention rate of 80.3% after 1000 cycles at 1 A g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!