The capacity to form biofilms is a common trait among many microorganisms present on Earth. In this study, we demonstrate for the first time that the fatal pine pitch canker agent, Fusarium circinatum, can lead a biofilm-like lifestyle with aggregated hyphal bundles wrapped in extracellular matrix (ECM). Our research shows F. circinatum's ability to adapt to environmental changes by assuming a biofilm-like lifestyle. This was demonstrated by varying metabolic activities exhibited by the biofilms in response to factors like temperature and pH. Further analysis revealed that while planktonic cells produced small amounts of ECM per unit of the biomass, heat- and azole-exposed biofilms produced significantly more ECM than nonexposed biofilms, further demonstrating the adaptability of F. circinatum to changing environments. The increased synthesis of ECM triggered by these abiotic factors highlights the link between ECM production in biofilm and resistance to abiotic stress. This suggests that ECM-mediated response may be one of the key survival strategies of F. circinatum biofilms in response to changing environments. Interestingly, azole exposure also led to biofilms that were resistant to DNase, which typically uncouples biofilms by penetrating the biofilm and degrading its extracellular DNA; we propose that DNases were likely hindered from reaching target cells by the ECM barricade. The interplay between antifungal treatment and DNase enzyme suggests a complex relationship between eDNA, ECM, and antifungal agents in F. circinatum biofilms. Therefore, our results show how a phytopathogen's sessile (biofilm) lifestyle could influence its response to the surrounding environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jobm.202300536 | DOI Listing |
Plant Dis
August 2024
University of Valladolid, Plant Production and Forest Resources, Palencia, Palencia, Spain.
Global change is exacerbating the prevalence of plant diseases caused by pathogenic fungi in forests worldwide. The conventional use of chemical fungicides, which is commonplace in agricultural settings, is not sanctioned for application in forest ecosystems, so novel control strategies are imperative. SIGS (Spray-Induced Gene Silencing) is a promising approach that can modulate the expression of target genes in eukaryotes in response to double-stranded RNA (dsRNA) present in the environment that triggers the RNA interference (RNAi) mechanism.
View Article and Find Full Text PDFBMC Plant Biol
July 2024
Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera Coruña km 7.5, Madrid, 28040, Spain.
Background: Fusarium circinatum is the causal agent of pine pitch canker disease, which affects Pinus species worldwide, causing significant economic and ecological losses. In Spain, two Pinus species are most affected by the pathogen; Pinus radiata is highly susceptible, while Pinus pinaster has shown moderate resistance. In F.
View Article and Find Full Text PDFPathogens
May 2024
Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa.
In ascomycetous fungi, sexual mate recognition requires interaction of the Ste2 receptor protein produced by one partner with the α-factor peptide pheromone produced by the other partner. In some fungi, Ste2 is further needed for chemotropism towards plant roots to allow for subsequent infection and colonization. Here, we investigated whether this is also true for the pine pitch canker fungus, , which is a devastating pathogen of pine globally.
View Article and Find Full Text PDFInt Microbiol
December 2024
Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt.
Ten fungal species were isolated from soil in the Western Desert and Wadi El-Natron in Egypt. All fungal isolates were morphologically recognized down to the species level. Methanol extracts of fungal mycelia and ethyl acetate extracts of culture filtrate from the isolated fungi were evaluated for antimicrobial activity against six pathogenic bacteria and one pathogenic yeast (Candida albicans ATCC20231).
View Article and Find Full Text PDFJ Basic Microbiol
April 2024
Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
The capacity to form biofilms is a common trait among many microorganisms present on Earth. In this study, we demonstrate for the first time that the fatal pine pitch canker agent, Fusarium circinatum, can lead a biofilm-like lifestyle with aggregated hyphal bundles wrapped in extracellular matrix (ECM). Our research shows F.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!