Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Poly(vinyl chloride) undergoes dechlorination in the presence of triethylsilane (EtSiH) and a catalytic amount of [CpZr(NPh)][CHB(CF)] (1 b) at 40-80 °C, with up to 91 % efficiency. Stoichiometric reactivity studies conducted on cyclohexyl chloride as a model suggest that 1 b dechlorinates PVC by initial chloride abstraction, followed by hydride transfer to the cationic PVC chain from EtSiH. Consumer items such as pipe fitting, vinyl disc or electric cable insulation undergo either dechlorination or hydrosilylation of the carbonyl-containing copolymer (polyvinyl acetate) or plasticizer (phthalate).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202304005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!