Efficacy evaluation of anti-DEC-IgY against antibiotic-resistant diarrhoeagenic .

J Med Microbiol

Centre for Research in Infectious Diseases (CRID), Bioengineering, School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India.

Published: February 2024

The rise of multi-drug-resistant bacteria poses a global threat. In 2017, the World Health Organization identified 12 antibiotic-resistant 'priority pathogens', including Enterobacteriaceae, highlighting the menace of Gram-negative bacteria. Diarrhoeagenic (DEC)-induced diarrhoea is particularly problematic for travellers and infants. In contrast to other antibiotic alternatives, passive immunotherapy is showing promise by providing immediate and precise protection. However, mammalian-sourced antibodies are costly, hindering large-scale production. Egg-laying chicken-derived IgY antibodies present a cost-effective, high-yield solution, revolutionizing antibody-based therapeutics compared to mammalian IgG. This study hypothesized that developing anti-DEC-IgY could combat DEC infections effectively. The primary aim was to develop anti-DEC-IgY and assess its potential in DEC-induced diarrhoeal management. Chickens were immunized with DEC antigens to induce an immune response. IgY antibodies were extracted from immune eggs and purified using ion-exchange column chromatography. Anti-DEC-IgY's ability to inhibit DEC growth was evaluated through growth inhibition assays. Anti-DEC-IgY's capacity to prevent adhesion was assessed using mice intestinal mucosa. experiments measured pathogen colonization reduction and infection severity reduction. values were calculated to confirm statistical significance. The antibacterial efficacy of anti-DEC-IgY by growth inhibition assay demonstrated that 25 mg ml of IgY could inhibit the DEC growth. The anti-adherence-property was tested using mice intestinal mucosa and found that anti-DEC-IgY could prevent the adhesion. results suggest that 12 mg ml of IgY will reduce the pathogen colonization in intestine and reduce the severity of the infection. The values between the experimental groups confirm the statistical significance of the findings. The study findings suggest that IgY-based passive immunotherapy could be a potential strategy for managing the risks associated with antibiotic-resistant bacterial infections. Additionally, this study paves the way for the development of IgY-related research and applications in India.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jmm.0.001801DOI Listing

Publication Analysis

Top Keywords

passive immunotherapy
8
igy antibodies
8
inhibit dec
8
dec growth
8
growth inhibition
8
prevent adhesion
8
mice intestinal
8
intestinal mucosa
8
pathogen colonization
8
confirm statistical
8

Similar Publications

Background: Relapsed/refractory classic Hodgkin lymphoma (R/R cHL) remains challenging to treat, and anti-CD30 chimeric antigen receptor T (CAR-T) cell therapy may be effective. This meta-analysis investigates the efficacy and safety of anti-CD30 CAR-T cell therapy for treating R/R cHL.

Methods: A systematic literature search of PubMed, Cochrane, Embase, ClinicalTrials.

View Article and Find Full Text PDF

Background: Adaptive cellular therapy (ACT), particularly chimeric antigen receptor (CAR)-T cell therapy, has been successful in the treatment of hemopoietic malignancies. However, poor trafficking of administered effector T cells to the tumor poses a great hurdle for this otherwise powerful therapeutic approach in solid cancers. Our previous study revealed that targeting CD93 normalizes tumor vascular functions to improve immune checkpoint blockade therapy.

View Article and Find Full Text PDF

Efficacy and safety of antiviral therapies for the treatment of persistent COVID-19 in immunocompromised patients since the Omicron surge: a systematic review.

J Antimicrob Chemother

January 2025

Division of Infectious Diseases, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Kerpener Str. 62, 50939 Cologne, Germany.

Background: Persistent COVID-19 (pCOVID-19) in immunocompromised patients is characterized by unspecific symptoms and pulmonary infiltrates due to ongoing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication. Treatment options remain unclear, leading to different approaches, including combination therapy and extended durations. The purpose of this study was to assess the efficacy and safety of antiviral therapies for pCOVID-19 in immunocompromised patients since the Omicron surge.

View Article and Find Full Text PDF

The ability of immune cells to expand numerically after infusion distinguishes adoptive immunotherapies from traditional drugs, providing unique therapeutic advantages as well as the potential for unmanageable toxicities. Here, we describe a case of lethal hyperleukocytosis in a patient with neuroblastoma treated on phase 1 clinical trial (NCT03294954) with autologous natural killer T cells (NKTs) expressing a GD2-specific chimeric antigen receptor and cytokine interleukin 15 (GD2-CAR.15).

View Article and Find Full Text PDF
Article Synopsis
  • FT596 is a novel cancer therapy using iPSC-derived CAR NK cells targeting CD19, designed to assess its safe dosage and effectiveness alone and with rituximab in patients with B-cell lymphoma.
  • This phase 1 trial involved patients with relapsed or refractory B-cell lymphoma, administering FT596 after chemotherapy, with separate regimens for those receiving rituximab and those who did not.
  • The study measured potential side effects while determining the optimal dose of FT596 and allowed modifications to the treatment based on patient tolerance and response.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!