A study on the physicochemical properties of surface modified Ti13Nb13Zr alloy for skeletal implants.

Acta Bioeng Biomech

Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland.

Published: January 2022

As it is widely stated in the literature, biofilms are responsible for most chronic infections, which have grown exponentially over the past three decades. The use of so-called alloys, as a new generation of materials, enables us to find the golden mean in the arena widely known as implantology. The use of the surface layer, using the chosen Atomic Layer Deposition method, is to be the basis for minimizing the risk of an organism reactions. Therefore, the primary objective of this study was to observe the impact of physicochemical properties of the surface layers (bactericidal) on the processes that occur on the implants surface made of titanium biomaterials used in bone structures. The study also attempted to evaluate the physicochemical properties of the ZnO coatings, deposited on the substrate of one of the new generation Ti13Nb13Zr alloys, using the ALD method. Included in the assessment of the physicochemical properties of the surface layers formed in this manner, we perform pitting corrosion resistance tests, scratch tests, tribological tests and surface wettability tests. Based on the obtained data, the differing physicochemical properties of the alloy with ZnO coatings are found to be dependent on the applied surface modification. For the conducted tests, differences are determined for the tests on the corrosion resistance, surface wettability and the abrasion resistance for samples with and without the ZnO coating. In addition, tests show that the coating applied to the alloy, which is previously subjected to the sand-blasted process, is characterized by improved adhesion.

Download full-text PDF

Source

Publication Analysis

Top Keywords

physicochemical properties
20
properties surface
12
surface
8
surface layers
8
zno coatings
8
corrosion resistance
8
surface wettability
8
tests
7
properties
5
study physicochemical
4

Similar Publications

Aromatic π-complexes play a significant role in various chemical and biological systems, significantly influencing their physico-chemical and spectroscopic properties. The identification of new compounds capable of π-complex formation is therefore of great interest. The paper investigates the fluorescent properties of 1,5-diisocyanonaphthalene (1,5-DIN) in different aromatic solvents, demonstrating its potential for distinguishing between aromatics based on emission spectra.

View Article and Find Full Text PDF

Compounds containing the piperidine group are highly attractive as building blocks for designing new drugs. Functionalized piperidines are of significant interest due to their prevalence in the pharmaceutical field. Herein, 3-oxo-3-(piperidin-1-yl) propanenitrile has been synthesized, and piperidine-based sodium alginate/poly(vinyl alcohol) films have been prepared.

View Article and Find Full Text PDF

Prussian blue analogs (PBAs), as a classical kind of microporous materials, have attracted substantial interests considering their well-defined framework structures, unique physicochemical properties and low cost. However, PBAs typically adopt cubic structure that features small pore size and low specific surface area, which greatly limits their practical applications in various fields ranging from gas adsorption/separation to energy conversion/storage and biomedical treatments. Here we report the facile and general synthesis of unconventional hexagonal open PBA structures.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are strongly associated with cellular physiological mechanisms and implicated in the numerous diseases. By exploring the subcellular localizations of lncRNAs, we can not only gain crucial insights into the molecular mechanisms of lncRNA-related biological processes but also make valuable contributions towards the diagnosis, prevention, and treatment of various human diseases. However, conventional experimental techniques tend to be laborious and time-intensive.

View Article and Find Full Text PDF

Microplastics (MPs) in nature inevitably undergo various aging processes and may exhibit varied interfacial interactions with the coexisted contaminants. Here several discarded disposable polyethylene and polypropylene plastic packaging materials were collected and employed as the raw materials of MPs, and the effects of stimulated UV irradiation and microbial colonization on the variations of surface physicochemical characteristics, including biofilm content, oxygen-containing functional groups, oxygen/carbon ratio, hydrophilicity and surface charge properties were explored. Simultaneously, the adsorption behavior of each MPs on the representative cationic dye crystal violet (CV), as well as the influences of salinity and pH of CV solution, was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!