Alginates are linear anionic polysaccharides, which are well-known for their biocompatible, nontoxic, and biodegradable nature. The polymer consists of alternating units of β-(1 → 4)-linked D-mannuronic acid (M) and α-(1 → 4)-linked L-guluronic acid (G) that have hydroxyl and carboxyl groups as the main functional groups. As a large number of free carboxyl and hydroxyl groups are present in the polymeric chain, the polymer is predominantly hydrophilic. The food and pharmaceutical industries have been the most extensive utilizers of alginates to produce gelling and thickening agents. However, by imparting hydrophobicity to alginates, the range of applications can be widened. Although there are reviews on alginate and its chemical modifications, reviews focusing on hydrophobically associated alginates have not been presented. The commonly used chemical modifications to incorporate hydrophobicity include esterification, Ugi reaction, reductive amination, and graft copolymerization. The hydrophobically modified alginates play an important role in delivery of hydrophobic drugs and pesticides as the modification increases the affinity toward hydrophobic components and helps in their sustained release. Due to their nontoxic and edible nature, they find use in the food industry as emulsion stabilizer to stabilize oil-in-water emulsions and to improve creaming ability. Further, alginate-based materials such as membranes, aerogels, and films are hydrophobically modified to improve their functionality and applicability to water treatment and food packaging. This Review aims to highlight the important chemical modifications and methods that are done to impart hydrophobicity to alginate, and the applications of hydrophobically modified alginates in different sectors ranging from drug delivery to food packaging are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10831841 | PMC |
http://dx.doi.org/10.1021/acsomega.3c08619 | DOI Listing |
ACS Chem Biol
January 2025
Department of Chemistry, Binghamton University, the State University of New York, Binghamton, New York 13902, United States.
RNA interference (RNAi) has rapidly matured as a novel therapeutic approach. In this field, chemical modifications have been critical to the clinical success of short interfering RNAs (siRNAs). Notwithstanding the significant advances, achieving robust durability and gene silencing in extrahepatic tissues, as well as reducing off-target effects of siRNA, are areas where chemical modifications can still improve siRNA performance.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Food Quality and Nutrition, Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige, Italy.
The final aim of metabolomics is the comprehensive and holistic study of the metabolome in biological samples. Therefore, the use of instruments that enable the analysis of metabolites belonging to various chemical classes in a wide range of concentrations is essential, without compromising on robustness, resolution, sensitivity, specificity, and metabolite annotation. These characteristics are crucial for the analysis of very complex samples, such as wine, whose metabolome is the result of the sum of metabolites derived from grapes, yeast(s), bacteria(s), and chemical or physical modification during winemaking.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Biomic Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation, Aristotle University, Thessaloniki, Greece.
Metabolomics aims at identification and quantitation of key end point metabolites, basically polar, in order to study changes in biochemical activities in response to pathophysiological stimuli or genetic modifications. Targeted profiling assays enjoying a growing popularity over the last years with LC-MS/MS as a powerful tool for development of such (semi-)quantitative methods for a large number of metabolites. Here we describe a method for absolute quantitation of ca.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, China.
A pentafluoropropionic acid-functionalized fluorescent metal-organic framework material (UiO-66-NH-PFPA) is prepared by a simple post-synthetic modification (PSM) strategy for the sensitive and selective detection of dichloran (DCN). The results of fluorescence experiments demonstrate that the sensitivity of UiO-66-NH-PFPA (limit of detection, LOD = 0.478 μM) to DCN is nearly 10.
View Article and Find Full Text PDFJ Membr Biol
January 2025
Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei (UFSJ), Divinópolis, Brazil.
Cancer is a leading cause of death worldwide and its treatment is hampered by the lack of specificity and side effects of current drugs. Cardiotonic steroids (CTS) interact with Na/K-ATPase (NKA) and induce antineoplastic effects, but their narrow therapeutic window is key limiting factor. The synthesis of digitoxigenin derivatives with glycosidic unit modifications is a promising approach to develop more selective and effective antitumor agents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!