Surfactant flooding has suffered a huge setback owing to its cost and the ecotoxic nature of synthetic surfactants. The potential of natural surfactants for enhanced oil recovery has attracted a great deal of research interest in recent times. In this research, orange mesocarp extract (OME) was studied as a potential green surface-active agent in recovering heavy oil. The extract obtained from the orange () mesocarp using alkaline water as solvent was characterized by Fourier transform infrared spectrophotometry . Phase behavior was studied to ascertain its stability at 100 °C and compatibility with divalent ions. Microemulsion system, interfacial tension, optimal salinity, and critical micelle concentration were analyzed to evaluate the surfactant. Oil displacement analysis using an oil-wet sandstone medium under reservoir conditions was performed. Surfactant adsorption mechanism on the core was investigated at atmospheric conditions (28 °C) using the Langmuir, Freundlich, Temkin, and linear isotherm models, while the kinetics pattern was modeled with the pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models. Results showed fluid compatibility and bicontinuous microemulsion at varied temperatures. Surfactant flooding produced an additional oil recovery of 44 and 29.1%, which confirms the capability of this natural surfactant in recovering heavy oil. Langmuir isotherm gave the highest correlation coefficient () value of 0.982, indicating that the adsorption of the surfactant (OME) on the core occurred at specific homogeneous sites, which when occupied by a higher surfactant concentration will disallow further adsorption on these sites. From the values, almost all of the kinetic models corroborated good adsorption capacity of the core and an affinity for the surfactant at low concentration. This indicates that low concentration of the surfactant may not favor the enhanced oil recovery operation due to adsorption in the reservoirs, hence the need to flood at a higher surfactant concentration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10831974 | PMC |
http://dx.doi.org/10.1021/acsomega.3c04651 | DOI Listing |
Plants (Basel)
April 2024
Department of Chemistry and Biochemistry, Lubbock Christian University, Lubbock, TX 79407, USA.
Physiological maturity impacts seed quality through various mechanisms including vigor, desiccation tolerance, dormancy induction, synthesis of raw materials (including seed storage proteins), and the reorganization of metabolisms. Peanut seed development can be classified into seven classes with four incremental stages per class. Based on the mesocarp color, the final three stages are commonly referred to as "orange", "brown", and "black".
View Article and Find Full Text PDFACS Omega
January 2024
Department of Pure & Industrial Chemistry, University of Port Harcourt, Port Harcourt PMB 5323, Rivers State, Nigeria.
Surfactant flooding has suffered a huge setback owing to its cost and the ecotoxic nature of synthetic surfactants. The potential of natural surfactants for enhanced oil recovery has attracted a great deal of research interest in recent times. In this research, orange mesocarp extract (OME) was studied as a potential green surface-active agent in recovering heavy oil.
View Article and Find Full Text PDFJ Med Food
February 2024
Laboratory of Experimental Nutrition, School of Nutrition, Federal University of Goiás (UFG), Goiânia, Brazil.
Pequi is a native and popular fruit in Cerrado biome. The internal yellow-orange mesocarp is the edible fraction of the fruit, but its shell (peel and external mesocarp), which comprises 80% of the fruit, is not used by the agro-industry during fruit processing. There is a growing interest in the reduction of food loss and waste because of environmental, economic, and social impacts.
View Article and Find Full Text PDFPlant Dis
August 2023
Democritus University of Thrace School of Engineering, 112221, Xanthi, East Macedonia and Thrace, Greece;
In May 2022, rot symptoms were observed 5 days after storage on fresh avocado fruits cv "Lamb Hass" harvested from a 3.4 ha organic orchard in Chania, Crete exhibiting 30% symptom incidence. Brownish-green sunken lesions and soft rot with dark brown lesions covering up to 50% of the mesocarp on fruits and blackish soft lesions on fruit stem ends were observed.
View Article and Find Full Text PDFJ Hazard Mater
April 2023
College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China. Electronic address:
Prochloraz (PTIC) is a hazardous fungicide used worldwide on agricultural produce despite concerns about potential impacts on human health and environmental pollution. The residue of PTIC and its metabolite 2,4,6-trichlorophenol (2,4,6-TCP) in fresh produce has largely not been clarified. Herein, we address this research gap by examining residues of PTIC and 2,4,6-TCP in fruit of Citrus sinensis through a typical storage period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!