Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, a hybrid alkali-activated ground-granulated cement consisting of 70% blast furnace slag (GGBFS) and 30% Portland cement (PC) activated with sodium sulfate was studied. Results were compared with those of a blended system without an activator. The addition of the activator significantly increased the kinetics and degree of reaction of these cements, particularly at early curing ages (2 days), without leading to significant changes in the phase assemblage. The main reaction product formed was an aluminum-substituted calcium silicate hydrate (C-A-S-H) type gel, with a Ca/Si ratio comparable to that of the activator-free blended cement; however, in the presence of the activator, sorption of sulfur was observed in the C-A-S-H phase. The formation of secondary phases including ettringite and Ca- or Mg-rich layered double hydroxides was also identified in these cements depending on the curing age and activation addition. This study demonstrates the effectiveness of sodium sulfate in accelerating the phase assemblage evolution in high-GGBFS-content PC-blended cements without leading to significant changes in the reaction products formed, particularly at advanced curing ages. This represents a step forward in the development of cements with a reduced clinker factor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10836761 | PMC |
http://dx.doi.org/10.1021/acssuschemeng.3c05937 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!