The title compound, CHNO, is a hy-droxy-lated pyridine ring that has been studied for its involvement in microbial degradation of nicotinic acid. Here we describe its synthesis as a formic acid salt, rather than the standard hydro-chloride salt that is commercially available, and its spectroscopic and crystallographic characterization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833402 | PMC |
http://dx.doi.org/10.1107/S205698902300974X | DOI Listing |
Mar Drugs
December 2024
CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China.
Six new sesquiterpenes, including four eremophilane derivatives fureremophilanes A-D (-) and two acorane analogues furacoranes A and B ( and ), were characterized from the culture extract of the cold-seep derived fungus CS-280 co-cultured with autoclaved QDIO-4. All the six compounds were highly oxygenated especially and with infrequent epoxyethane and tetrahydrofuran ring systems. The structures of - were established on the basis of detailed interpretation of 1D and 2D NMR and MS data.
View Article and Find Full Text PDFACS Catal
December 2024
Department of Crystallography and Structural Biology, Consejo Superior de Investigaciones Científicas, Instituto de Química-Física "Blas Cabrera", Madrid 28006, Spain.
Remodeling of the pneumococcal cell wall, carried out by peptidoglycan (PG) hydrolases, is imperative for maintaining bacterial cell shape and ensuring survival, particularly during cell division or stress response. The protein Spr1875 plays a role in stress response, both regulated by the VicRK two-component system (analogous to the WalRK TCS found in Firmicutes). Modular Spr1875 presents a putative cell-wall binding module at the N-terminus and a catalytic C-terminal module (Spr1875) connected by a long linker.
View Article and Find Full Text PDFInorg Chem
December 2024
College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
Ligand-stabilized metal nanoclusters with atomic precision are considered to be promising materials in the field of light-emitting and harvesting. Among these, nanoclusters with thermally activated delayed fluorescence (TADF) properties are highly sought after. While several gold and silver nanoclusters with TADF properties have been reported in recent years, research on copper counterparts has significantly lagged behind.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China.
2D transition-metal dichalcogenide (TMDC) semiconductors represent the most promising channel materials for post-silicon microelectronics due to their unique structure and electronic properties. However, it remains challenging to synthesize wide-bandgap TMDCs monolayers featuring large areas and high performance simultaneously. Herein, highly oriented WS monolayers are reproducibly synthesized through a templated growth strategy on vicinal C/A-plane sapphire wafers.
View Article and Find Full Text PDFRSC Adv
December 2024
Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 P.R. China
This study presents the synthesis and characterization of novel cocrystal structures of theophylline (THE) with the amino acids gamma-aminobutyric acid (GABA) and l-arginine (ARG). Despite a large number of reports about THE cocrystals, no crystallographic parameters of cocrystals formed by THE and amino acids have been reported. THE is characterized by low solubility, while amino acids as cocrystal co-formers (CCFs) are increasingly recognized for their high solubility and safety.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!