In the mammalian cochlea, moderate acoustic overexposure leads to loss of ribbon-type synapse between the inner hair cell (IHC) and its postsynaptic spiral ganglion neuron (SGN), causing a reduced dynamic range of hearing but not a permanent threshold elevation. A prevailing view is that such ribbon loss (known as synaptopathy) selectively impacts the low-spontaneous-rate and high-threshold SGN fibers contacting predominantly the modiolar IHC face. However, the spatial pattern of synaptopathy remains scarcely characterized in the most sensitive mid-cochlear region, where two morphological subtypes of IHC with distinct ribbon size gradients coexist. Here, we used volume electron microscopy to investigate noise exposure-related changes in the mouse IHCs with and without ribbon loss. Our quantifications reveal that IHC subtypes differ in the worst-hit area of synaptopathy. Moreover, we show relative enrichment of mitochondria in the surviving SGN terminals, providing key experimental evidence for the long-proposed role of SGN-terminal mitochondria in synaptic vulnerability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10835352PMC
http://dx.doi.org/10.1016/j.isci.2024.108825DOI Listing

Publication Analysis

Top Keywords

ribbon loss
12
inner hair
8
hair cell
8
spatial patterns
4
patterns noise-induced
4
noise-induced inner
4
ribbon
4
cell ribbon
4
loss
4
loss mouse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!