Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: With the rapid development of artificial intelligence, prediction of warfarin dose via machine learning has received more and more attention. Since the dose prediction involve both linear and nonlinear problems, traditional machine learning algorithms are ineffective to solve such problems at one time.
Objective: Based on the characteristics of clinical data of Chinese warfarin patients, an improved stacking ensemble learning can achieve higher prediction accuracy.
Methods: Information of 641 patients from southern China who had reached a steady state on warfarin was collected, including demographic information, medical history, genotype, and co-medication status. The dataset was randomly divided into a training set (90%) and a test set (10%). The predictive capability is evaluated on a new test set generated by stacking ensemble learning. Additional factors associated with warfarin dose were discovered by feature selection methods.
Results: A newly proposed heuristic-stacking ensemble learning performs better than traditional-stacking ensemble learning in key metrics such as accuracy of ideal dose (73.44%, 71.88%), mean absolute errors (0.11 mg/day, 0.13 mg/day), root mean square errors (0.18 mg/day, 0.20 mg/day) and R (0.87, 0.82).
Conclusions: The developed heuristic-stacking ensemble learning can satisfactorily predict warfarin dose with high accuracy. A relationship between hypertension, a history of severe preoperative embolism, and warfarin dose is found, which provides a useful reference for the warfarin dose administration in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10834785 | PMC |
http://dx.doi.org/10.3389/fcvm.2023.1320938 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!