In this scholarly review, we conduct a thorough examination of the significant role played by platelet-derived exosomes (Plt-Exos) and hydrogels in the fields of tissue engineering and regenerative medicine. Our detailed investigation highlights the central involvement of Plt-Exos in various physiological and pathological processes, underscoring their potential contributions to diverse areas such as wound healing, neural rejuvenation, and cancer progression. Despite the promising therapeutic aspects, the notable variability in the isolation and characterization of pEVs underscores the need for a more rigorous and standardized methodology. Shifting our focus to hydrogels, they have emerged as promising biomaterials relevant to tissue engineering and regenerative medicine. Their unique characteristics, especially their chemical and physical adaptability, along with the modifiability of their biochemical properties, make hydrogels a captivating subject. These exceptional features open avenues for numerous tissue engineering applications, facilitating the delivery of essential growth factors, cytokines, and microRNAs. This analysis explores the innovative integration of Plt-Exos with hydrogels, presenting a novel paradigm in tissue engineering. Through the incorporation of Plt-Exos into hydrogels, there exists an opportunity to enhance tissue regeneration endeavors by combining the bioactive features of Plt-Exos with the restorative capabilities of hydrogel frameworks. In conclusion, the cooperative interaction between platelet-derived exosomes and hydrogels indicates a promising path in tissue engineering and regenerative medicine. Nevertheless, the successful execution of this approach requires a deep understanding of molecular dynamics, coupled with a dedication to refining isolation techniques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10835177 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e24584 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!