Aging is a complex and inevitable biological process affected by a combination of external environmental and genetic factors. Humans are currently living longer than ever before, accompanied with aging-related alterations such as diminished autophagy, decreased immunological function, mitochondrial malfunction, stem cell failure, accumulation of somatic and mitochondrial DNA mutations, loss of telomere, and altered nutrient metabolism. Aging leads to a decline in body functions and age-related diseases, for example, Alzheimer's disease, which adversely affects human health and longevity. The quality of life of the elderly is greatly diminished by the increase in their life expectancy rather than healthy life expectancy. With the rise in the age of the global population, aging and related diseases have become the focus of attention worldwide. In this review, we discuss several major mechanisms of aging, including DNA damage and repair, free radical oxidation, telomeres and telomerase, mitochondrial damage, inflammation, and their role in neurodegenerative diseases to provide a reference for the prevention of aging and its related diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10835255 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e24751 | DOI Listing |
Acta Neuropathol Commun
January 2025
Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy.
The generation of retinal models from human induced pluripotent stem cells holds significant potential for advancing our understanding of retinal development, neurodegeneration, and the in vitro modeling of neurodegenerative disorders. The retina, as an accessible part of the central nervous system, offers a unique window into these processes, making it invaluable for both study and early diagnosis. This study investigates the impact of the Frontotemporal Dementia-linked IVS 10 + 16 MAPT mutation on retinal development and function using 2D and 3D retinal models derived from human induced pluripotent stem cells.
View Article and Find Full Text PDFMol Neurodegener
January 2025
The Picower Institute for Learning and Memory, Cambridge, MA, USA.
Many diseases and disorders of the nervous system suffer from a lack of adequate therapeutics to halt or slow disease progression, and to this day, no cure exists for any of the fatal neurodegenerative diseases. In part this is due to the incredible diversity of cell types that comprise the brain, knowledge gaps in understanding basic mechanisms of disease, as well as a lack of reliable strategies for delivering new therapeutic modalities to affected areas. With the advent of single cell genomics, it is now possible to interrogate the molecular characteristics of diverse cell populations and their alterations in diseased states.
View Article and Find Full Text PDFNat Neurosci
January 2025
Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.
Our understanding of Alzheimer's disease (AD) has transformed from a purely neuronal perspective to one that acknowledges the involvement of glial cells. Despite remarkable progress in unraveling the biology of microglia, astrocytes and vascular elements, the exploration of oligodendrocytes in AD is still in its early stages. Contrary to the traditional notion of oligodendrocytes as passive bystanders in AD pathology, emerging evidence indicates their active participation in and reaction to amyloid and tau pathology.
View Article and Find Full Text PDFJ Mol Histol
January 2025
Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
Malignant tumors are among the major diseases threatening human survival in the world, and advancements in medical technology have led to a steady increase in their detection rates worldwide. Despite unique clinical presentations across the spectrum of malignancies, treatment modalities generally adhere to common strategies, encompassing primarily surgical intervention, radiation therapy, chemotherapy, and targeted treatments. Uncovering the genetic elements contributing to cancer cell proliferation, metastasis, and drug resistance remains a pivotal pursuit in the development of novel targeted therapeutics.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by progressive memory loss and cognitive decline. The processes underlying the pathophysiology of AD are still not fully understood despite a great deal of research. Since mitochondrial dysfunction affects cellular energy metabolism, oxidative stress, and neuronal survival, it is becoming increasingly clear that it plays a major role in the development of AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!