Bioinspired 3D flexible devices and functional systems.

Natl Sci Rev

Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing  100084, China.

Published: March 2024

Flexible devices and functional systems with elaborated three-dimensional (3D) architectures can endow better mechanical/electrical performances, more design freedom, and unique functionalities, when compared to their two-dimensional (2D) counterparts. Such 3D flexible devices/systems are rapidly evolving in three primary directions, including the miniaturization, the increasingly merged physical/artificial intelligence and the enhanced adaptability and capabilities of heterogeneous integration. Intractable challenges exist in this emerging research area, such as relatively poor controllability in the locomotion of soft robotic systems, mismatch of bioelectronic interfaces, and signal coupling in multi-parameter sensing. By virtue of long-time-optimized materials, structures and processes, natural organisms provide rich sources of inspiration to address these challenges, enabling the design and manufacture of many bioinspired 3D flexible devices/systems. In this Review, we focus on bioinspired 3D flexible devices and functional systems, and summarize their representative design concepts, manufacturing methods, principles of structure-function relationship and broad-ranging applications. Discussions on existing challenges, potential solutions and future opportunities are also provided to usher in further research efforts toward realizing bioinspired 3D flexible devices/systems with precisely programmed shapes, enhanced mechanical/electrical performances, and high-level physical/artificial intelligence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833470PMC
http://dx.doi.org/10.1093/nsr/nwad314DOI Listing

Publication Analysis

Top Keywords

bioinspired flexible
16
flexible devices
12
devices functional
12
functional systems
12
flexible devices/systems
12
mechanical/electrical performances
8
physical/artificial intelligence
8
flexible
5
bioinspired
4
systems
4

Similar Publications

Multidimensional free shape-morphing flexible neuromorphic devices with regulation at arbitrary points.

Nat Commun

January 2025

Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.

Biological neural systems seamlessly integrate perception and action, a feat not efficiently replicated in current physically separated designs of neural-imitating electronics. This segregation hinders coordination and functionality within the neuromorphic system. Here, we present a flexible device tailored for neuromorphic computation and muscle actuation.

View Article and Find Full Text PDF

Bioinspired bicontinuous adhesive hydrogel for wearable strain sensor with high sensitivity and a wide working range.

J Colloid Interface Sci

January 2025

Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094 China. Electronic address:

Conductive hydrogel strain sensors demonstrate extensive potential in artificial robotics, human-computer interaction, and health monitoring, owing to their excellent flexibility and biocompatibility. Wearable strain sensors for real-time monitoring of human activities require hydrogels with self-adhesion, desirable sensitivity, and wide working range. However, balancing the high sensitivity and a wide working range remains a challenge.

View Article and Find Full Text PDF

The application of physical fields is crucial for droplet generation and manipulation, underpinning technologies like printing, microfluidic biochips, drug delivery, and flexible sensors. Despite advancements, precise micro/nanoscale droplet generation and accurate microfluidic reactions remain challenging. Inspired by the liquid ejection mechanisms in microscopic organisms, an electrostatic manipulator for the precise capture, emission, and transport of microdroplets is proposed.

View Article and Find Full Text PDF

Preparation and Application of Nature-inspired High-performance Mechanical Materials.

Acta Biomater

January 2025

The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China.

Natural materials are valued for their lightweight properties, high strength, impact resistance, and fracture toughness, often outperforming human-made materials. This paper reviews recent research on biomimetic composites, focusing on how composition, microstructure, and interfacial characteristics affect mechanical properties like strength, stiffness, and toughness. It explores biological structures such as mollusk shells, bones, and insect exoskeletons that inspire lightweight designs, including honeycomb structures for weight reduction and impact resistance.

View Article and Find Full Text PDF

Fiber-based strain sensors, as wearable integrated devices, have shown substantial promise in health monitoring. However, current sensors suffer from limited tunability in sensing performance, constraining their adaptability to diverse human motions. Drawing inspiration from the structure of the spiranthes sinensis, this study introduces a unique textile wrapping technique to coil flexible silver (Ag) yarn around the surface of multifilament elastic polyurethane (PU), thereby constructing a helical structure fiber-based strain sensor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!