A new approach to characterize airborne firebrands during Wildland-Urban Interface (WUI) fires is detailed. The approach merges the following two imaging techniques in a single field-deployable diagnostic tool: (1) 3D Particle Tracking Velocimetry (3D-PTV), for time-resolved mapping of firebrand 3D trajectories, and (2) 3D Particle Shape Reconstruction (3D-PSR), to reconstruct 3D models of individual particles following the Visual Hull principle. This tool offers for the first time the possibility to simultaneously study time-resolved firebrand fluxes and firebrand size distribution to the full extent of their three-dimensional nature within a control volume. Methodologies used in the present work are presented and their technical implementation are discussed. Validation tests to confirm proper tracking/sizing of particles are detailed. The diagnostic tool is applied to a firebrand shower artificially generated at the NIST National Fire Research Laboratory. A novel graphic representation, that incorporates both the Cumulative Particle Count (CPC, particles m) and Particle Number Flux (PNF, particles m s) as relevant exposure metrics, is presented and the exposure level is compared to that of an actual outdoor fire. Size distributions obtained for airborne firebrands are compared to those achieved through ground collection and strategies to improve the particle shape reconstruction method are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10836234PMC
http://dx.doi.org/10.1007/s00348-021-03277-6DOI Listing

Publication Analysis

Top Keywords

approach characterize
8
imaging techniques
8
airborne firebrands
8
diagnostic tool
8
particle shape
8
shape reconstruction
8
firebrand
5
particle
5
characterize firebrand
4
firebrand showers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!