This systematic review explores the release and health outcomes of exposure to chalk particles in classrooms. A literature search was conducted on Scopus, Google Scholar, and the Web of Science. Chalk particles contribute significantly to poor indoor air quality in classrooms. Higher concentrations of PM chalk particles were found in the front row (14.25 µg/m) and near the chalkboard (19.07 µg/m). Inhalation and dermal are significant exposure routes; hence, teachers and learners are at risk of developing respiratory and skin disorders. Inhalation of chalk particles correlates with reduced lung function in teachers and learners. The release and size of chalk particles depend on the activities, type of chalk sticks, and texture of the chalkboards. Wiping the chalkboard releases more chalk particles of smaller size (3.85-9.3 µm) than writing (10.57-92.91 µm). A shift from chalk sticks and chalkboards in classrooms is necessary to mitigate the associated health risks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09603123.2024.2311228 | DOI Listing |
Eur J Pharmacol
January 2025
Université Paris-Est, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, 94010 Créteil, France; AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Centre d'investigation clinique Biotherapie, F-94010 Creteil, France. Electronic address:
Pancreatic cancer (PCa) is one of the most devastating cancers with few clinical signs and no truly effective therapy. In recent years, our team has demonstrated that nucleolin antagonists such as N6L could be a therapeutic alternative for this disease. In order to study a possible clinic development of N6L (multivalent pseudopeptide), we undertook to study the effect of combination of N6L with chemotherapies classically used for PCa on the survival of pancreatic cancer cells.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Materials Engineering and Welding Department, Transilvania University of Brasov, 500036 Brasov, Romania.
This review explores the impact of various additives on the mechanical properties of polylactic acid (PLA) filaments used in Fused Deposition Modeling (FDM) 3D printing. While PLA is favored for its biodegradability and ease of use, its inherent limitations in strength and heat resistance necessitate enhancements through additives. The impact of natural and synthetic fibers, inorganic particles, and nanomaterials on the mechanical properties, printability, and overall functionality of PLA composites was examined, indicating that fiber reinforcements, such as carbon and glass fibers, significantly enhance tensile strength and stiffness, while natural fibers contribute to sustainability but may compromise mechanical stability.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
January 2025
College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
Concrete is widely used in building construction, civil engineering, roads, bridges, etc., but concrete cracking remains a major issue in the engineering industry. To develop an effective and feasible concrete repair technology, this study combined microbial and microencapsulation technologies to prepare a multi-layer compound microcapsule using the piercing method.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Cardiology, The First People's Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, 317500, China.
Immobilizing enzymes onto solid supports having enhanced catalytic activity and resistance to harsh external conditions is considered as a promising and critical method of broadening enzymatic applications in biosensing, biocatalysis, and biomedical devices; however, it is considerably hampered by limited strategies. Here, a core-shell strategy involving a soft-core hexahistidine metal assembly (HmA) is innovatively developed and characterized with encapsulated enzymes (catalase (CAT), horseradish peroxidase, glucose oxidase (GOx), and cascade enzymes (CAT+GOx)) and hard porous shells (zeolitic imidazolate framework (ZIF), ZIF-8, ZIF-67, ZIF-90, calcium carbonate, and hydroxyapatite). The enzyme-friendly environment provided by the embedded HmA proves beneficial for enhanced catalytic activity, which is particularly effective in preserving fragile enzymes that will have been deactivated without the HmA core during the mineralization of porous shells.
View Article and Find Full Text PDFSci Rep
January 2025
School of Civil Engineering, Central South University, Changsha, 410075, China.
Using potentiometric testing, we investigated the zeta potential of shield muck curing materials' particle surfaces, varying the concentration of metal ion complex. We analyzed the microscopic characteristics of shield muck curing products by using the electron microscopy, revealing the impact of metal ion complex on curing. Results showed that the metal ion complex significantly reduces the surface zeta potential of shield muck and conventional curing materials, with cement showing the most substantial effect, followed by shield muck, calcium carbonate, and calcium sulfate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!