Our study focuses on molecular rotors with fast-moving rotators and their potential applications in the development of new amphidynamic crystals. Steroidal molecular rotors with a dipolar fluorine-substituted phenyl group as the rotator were synthesized and characterized. Three different rotors were investigated with varying numbers of fluorine atoms. A comprehensive analysis was performed using vibrational spectroscopy (Raman, FT-IR), electronic circular dichroism (ECD), and dielectric response to understand the behavior of the investigated model rotors. The results were supported by theoretical calculations using Density Functional Theory (DFT) methods. The angle-dependent polarized Raman spectra confirmed the crystallinity of the samples. Nearly frequency and temperature-independent permittivity suggest low-frequency librational motion of stators. An in-depth analysis of ECD spectra revealed high conformational flexibility in solution, resulting in low ECD effects, while in the solid-state with restricted rotation, significant ECD effects were observed. These findings shed light on the conformational behavior and potential applications of the studied steroidal molecular rotors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202303933DOI Listing

Publication Analysis

Top Keywords

molecular rotors
12
potential applications
8
steroidal molecular
8
ecd effects
8
rotors
6
molecular
4
molecular dynamics
4
dynamics steroidal
4
steroidal rotors
4
rotors probed
4

Similar Publications

Structure and Dynamics of the Bacterial Flagellar Motor Complex.

Biomolecules

November 2024

Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita Osaka 565-0871, Japan.

Many bacteria swim in liquids and move over solid surfaces by rotating flagella. The bacterial flagellum is a supramolecular protein complex that is composed of about 30 different flagellar proteins ranging from a few to tens of thousands. Despite structural and functional diversities of the flagella among motile bacteria, the flagellum commonly consists of a membrane-embedded rotary motor fueled by an ion motive force across the cytoplasmic membrane, a universal joint, and a helical propeller that extends several micrometers beyond the cell surface.

View Article and Find Full Text PDF

Despite its profound significance, the molecular structural changes near the transition state, driven by the vibronic coupling, have remained largely unexplored, leaving a crucial aspect of chemical reactions shrouded in uncertainty. Herein, the dynamical behavior of the reactive flux on the verge of chemical bond breakage was revealed through the spectroscopic characterization of a large amplitude vibrational motion. Highly excited internal rotor states of S methylamine (CHND) report on the structural change as the molecule approaches the transition state, indicating that the quasi-free internal rotation is strongly coupled to the reaction coordinate as their energies near the maximum of the reaction barrier for the N-D chemical bond predissociation.

View Article and Find Full Text PDF

The first FDA approved, MDR-TB inhibitory drug bedaquiline (BDQ), entraps the c-ring of the proton-translocating F region of enzyme ATP synthase of , thus obstructing successive ATP production. Present-day BDQ-resistance has been associated with cardiotoxicity and mutation(s) in the atpE gene encoding the c subunit of ATP synthase (ATPc) generating five distinct ATPc mutants: Ala63→Pro, Ile66→Met, Asp28→Gly, Asp28→Val and Glu61→Asp. We created three discrete libraries, first by repurposing bedaquiline via scaffold hopping approach, second one having natural plant compounds and the third being experimentally derived analogues of BDQ to identify one drug candidate that can inhibit ATPc activity more efficiently with less toxic properties.

View Article and Find Full Text PDF

Background: Flecainide and other class-Ic antiarrhythmic drugs (AADs) are widely used in Andersen-Tawil syndrome type 1 (ATS1) patients. However, class-Ic drugs might be proarrhythmic in some cases. We investigated the molecular mechanisms of class-I AADs proarrhythmia and whether they might increase the risk of death in ATS1 patients with structurally normal hearts.

View Article and Find Full Text PDF

Shifting CH/CO Adsorption and Separation in Pillar-Layered Metal-Organic Frameworks Finely-Regulated by Molecular Rotation.

Small

December 2024

Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.

The efficient separation of C₂H₂/CO₂ mixture is crucial for industrial applications.  A promising strategy is proposed herein to fine-tune the C₂H₂/CO adsorption and separation by pillar-layered metal-organic framework (MOF) adsorbents via molecular rotation. Keeping the same ultramicroporous architecture, three Zn-X-TRZ (TRZ = 1,2,4-triazole) adsorbents are prepared with X-pillar rotors varying from 9,10-anthracenedicarboxylic acid (ADC), 1,4-naphthalenedicarboxylic acid (NDC) to 1,4-benzenedicarboxylic acid (BDC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!