Loss of refreshment in nucleus pulposus (NP) cellularity leads to intervertebral disc (IVD) degeneration. Nevertheless, the cellular sequence of NP cell differentiation remains unclear, although an increasing body of literature has identified markers of NP progenitor cells (NPPCs). Notably, due to their fragility, the physical enrichment of NP-derived cells has limited conventional transcriptomic approaches in multiple studies. To overcome this limitation, a spatially resolved transcriptional atlas of the mouse IVD is generated via the 10x Genomics Visium platform dividing NP spots into two clusters. Based on this, most reported NPPC-markers, including Cathepsin K (Ctsk), are rare and predominantly located within the NP-outer subset. Cell lineage tracing further evidence that a small number of Ctsk-expressing cells generate the entire adult NP tissue. In contrast, Tie2, which has long suggested labeling NPPCs, is actually neither expressed in NP subsets nor labels NPPCs and their descendants in mouse models; consistent with this, an in situ sequencing (ISS) analysis validated the absence of Tie2 in NP tissue. Similarly, no Tie2-cre-mediated labeling of NPPCs is observed in an IVD degenerative mouse model. Altogether, in this study, the first spatial transcriptomic map of the IVD is established, thereby providing a public resource for bone biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095158 | PMC |
http://dx.doi.org/10.1002/advs.202303752 | DOI Listing |
Neurospine
December 2024
Balgrist University Hospital, Zurich, Switzerland.
This video aims to describe an endoscopic surgical approach for accessing difficult to reach pathology such as disc herniations after previous surgery. The relatively small size of endoscopic instruments facilitates significant freedom of movement inside the spinal canal. The authors have experience with interlaminar approaches for contralateral pathology such as disc herniations, recurrent disc herniations, spinal stenosis, and facet cysts.
View Article and Find Full Text PDFFASEB J
January 2025
HSS Research Institute, Hospital for Special Surgery, New York, New York, USA.
Aging is a risk factor for several chronic conditions, including intervertebral disc degeneration and associated back pain. Disc pathologies include loss of reticular-shaped nucleus pulposus cells, disorganization of annulus fibrosus lamellae, reduced disc height, and increased disc bulging. Sonic hedgehog, cytokeratin 19, and extracellular matrix proteins are markers of healthy disc.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
Intervertebral disc (IVD) degeneration represents a significant cause of chronic back pain and disability, with a substantial impact on the quality of life. Conventional therapeutic modalities frequently address the symptoms rather than the underlying etiology, underscoring the necessity for regenerative therapies that restore disc function. Polysaccharide-based materials, such as hyaluronic acid, alginate, chitosan, and chondroitin sulfate, have emerged as promising candidates for intervertebral disc degeneration (IVDD) therapy due to their biocompatibility, biodegradability, and ability to mimic the native extracellular matrix (ECM) of the nucleus pulposus (NP).
View Article and Find Full Text PDFJ Orthop Translat
January 2025
Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, China.
Balkan Med J
January 2025
Department of Spine Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
Background: Previous research has shown that apoptosis of nucleus pulposus (NP) cells contributes to intervertebral disc degeneration (IDD) progression. Endoplasmic reticulum (ER) stress is a reaction to diverse stimuli in eukaryotes and is tightly contacted with apoptosis. Quercetin, a naturally occurring flavonoid, exerts protective effects against degenerative diseases via ER stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!