Fate of contaminants of emerging concern in two wastewater treatment plants after retrofitting tertiary treatment for reduction of nitrogen discharge.

Environ Res

CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China. Electronic address:

Published: May 2024

AI Article Synopsis

  • More wastewater treatment plants (WWTPs) are being upgraded to tertiary treatment to meet stricter discharge standards for pollutants, including contaminants of emerging concern (CECs).
  • This study analyzed two retrofitted WWTPs, CD and JM, which achieved overall CEC removal efficiencies of 73.79% and 93.63%, respectively, while also releasing significant amounts of CECs into the environment.
  • The research highlights that most CECs were removed during biological treatment, and the results were used to assess the SimpleTreat model's effectiveness in predicting CEC behavior in WWTPs.

Article Abstract

More and more previously designed wastewater treatment plants (WWTPs) are upgraded to tertiary treatment to meet the higher effluent discharge standards of conventional pollutants. Contaminants of emerging concern (CECs) can cause adverse effects on organisms and usually flow into WWTPs along with urban sewage. How the retrofitted WWTPs targeting conventional pollutants will influence the treatment efficiency of CECs is seldom discussed. This study investigates the removal of CECs in two full-scale newly retrofitted WWTPs (CD and JM WWTPs), containing high-efficiency sedimentation tank and denitrification deep bed filter for enhancing total nitrogen removal. The overall CEC removal efficiencies in the CD and JM WWTPs were 73.79 % and 93.63 %, respectively. Mass balance results indicated that CD WWTP and JM WWTP release a total of 36.89 and 88.58 g/d of CECs into the environment through effluent and excess sludge, respectively. Analysis of the concentration of CECs along the treatment process revealed most CECs were removed in the biological treatment units. The incorporation of newly constructed tertiary treatment proved beneficial for CEC removal and removed 2.93 % and 2.36 % CECs, corresponding to CEC removal of 2.92 and 27.49 g/d in the CD and JM WWTPs, respectively. The data of this study were further used to evaluate the suitability of the SimpleTreat model for simulating the fate of CECs in WWTPs. The predicted fraction of CECs discharged through the biological treatment effluent were generally within ten-fold difference from the measured results, highlighting its potential for estimating CEC removal in WWTPs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.118344DOI Listing

Publication Analysis

Top Keywords

cec removal
16
tertiary treatment
12
treatment
9
wwtps
9
cecs
9
contaminants emerging
8
emerging concern
8
wastewater treatment
8
treatment plants
8
conventional pollutants
8

Similar Publications

Effect of cavity designs on instrumentation, obturation and fracture resistance of mandibular first premolars with Vertucci V canal.

J Endod

December 2024

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237# Luoyu Road, Wuhan 430079, People's Republic of China. Electronic address:

Introduction: This study aimed to assess the effect of cavity designs on instrumentation, obturation and fracture resistance for mandibular first premolars with Vertucci V canal.

Methods: Mandibular first premolars with Vertucci V canal were scanned with micro-CT. 20 teeth with moderately curved canal were prepared with conservative endodontic cavity (CEC/M) or traditional endodontic cavity (TEC/M), and 30 with severely curved canal were prepared with CEC (CEC/S), modified CEC (MCEC/S) or TEC (TEC/S).

View Article and Find Full Text PDF

This study explores the potential application of solar photochemical processes (SPPs) for simultaneous disinfection and decontamination of urban wastewater (UWW) when combined with constructed wetlands (CWs). Two SPPs based on the addition of low concentrations of hydrogen peroxide and peroxymonosulfate (PMS) were evaluated. SPPs were carried out at pilot plant scale using low-cost solar open photoreactors (Raceway Pond Reactor (RPR)) under natural sunlight.

View Article and Find Full Text PDF

Z-scheme CeO-TiO@CNT (CTC) heterojunction is fabricated using hydrothermal method and evaluated for removing mixed pollutants (MIX-P) from ciprofloxacin (CPF) and textile contaminations. CTC demonstrated ≈99% removal efficiency against MIX-P under solar irradiation of ≈10 lumens. High removal efficiency of CTC is attributed to reduced bandgap (E), 2.

View Article and Find Full Text PDF

Diclofenac Removal by Alkylammonium Clay Minerals Prepared over Microwave Heating.

ACS Omega

December 2024

Universidade Federal da Paraíba, Núcleo de Pesquisa e Extensão - Laboratório de Combustíveis e Materiais (NPE - LACOM), Cidade Universitária s/n - Campus I, 58051-900 João Pessoa, PB, Brazil.

Diclofenac is an emerging contaminant widely detected in water and has had adverse effects on the biota. In this study, the adsorbents were prepared by reacting tetradecyl-(C), hexadecyl-(C), and octadecyltrimethylammonium (C) bromides with sodium vermiculite (Na-Ver) and used for the removal of the first time for diclofenac sodium from aqueous solution. Synthesis was carried out in a microwave-assisted reactor operating at 50 °C for 5 min, using proportions of organic salts in 100 and 200% of the phyllosilicate cation exchange capacity.

View Article and Find Full Text PDF

One-step green hydrometallurgical recycling of spent lithium-ion batteries' cathode.

J Hazard Mater

December 2024

Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

The transition towards a low-carbon future hinges on the advancement of Lithium-ion battery (LIBs) technology, which has spurred a significant demand for raw materials and the management of waste batteries containing hazardous substances. Developing efficient and environmentally friendly recycling strategies is essential to tackle these challenges. Here, we introduce a one-step green hydrometallurgical recycling of spent lithium-ion batteries' cathode on the basis of contact-electro-catalytic (CEC) process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!