Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The use and demand of platelet-based bioproducts in regenerative medicine is steadily increasing. However, it is very difficult to establish the real clinical benefits of these therapies, as the lack of characterization and detailed production methods of platelet-based bioproducts persists in the literature and precludes cross-study comparisons. We characterized the molecular composition and in vitro regenerative capacity of platelet-rich plasma (PRP) produced in a closed-system. Furthermore, we performed a parallel characterization on different PRP subfractions (plasma and plasma-free platelet lysate), identifying that the fractions containing platelet-derived cargo exert the most potent regenerative capacity. This observation led us to develop a method to obtain a platelet secretome highly enriched in growth factors, free of plasma and cellular components (PCT/IB2022/057936), with the aim of establishing a superior bioproduct. The molecular characterization of secretomes revealed agonist-dependent differences, which correlates with beneficial grades of regenerative capacity. Importantly, secretomes showed general superiority to PRP in vitro. We discuss the variables influencing the bioproduct quality (inter-donor variation, platelet source and processing methods). Finally, we propose that the characteristics of secretomes circumvents certain limitations of PRP (autologous vs allogeneic), and envision that optimizing post-processing protocols (nanoencapsulation, lyophilization), would allow their clinical application even beyond regenerative medicine. STATEMENT OF SIGNIFICANCE: The use and demand of platelet-based bioproducts in regenerative medicine is steadily increasing. However, it is very difficult to establish the real clinical benefits of these therapies, or to improve/personalize them, as the lack of characterization of the bioproducts and their production methods is a constant in the literature, reason that precludes cross-study comparisons. In the present manuscript, we provide a comprehensive molecular and functional characterization of platelet-based bioproducts and subfractions, including platelet rich plasma, plasma fractions and platelet secretomes produced with a methodology developed by our group. Our results show that the molecular composition of each fraction correlates with its regenerative capacity in vitro. Thus, a rigorous characterization of platelet-derived bioproducts will potentially allow universal use, customizing and new applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2024.01.029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!