Stage-specific regulation of undifferentiated spermatogonia by AKT1S1-mediated AKT-mTORC1 signaling during mouse spermatogenesis.

Dev Biol

Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. Electronic address:

Published: May 2024

Undifferentiated spermatogonia are composed of a heterogeneous cell population including spermatogonial stem cells (SSCs). Molecular mechanisms underlying the regulation of various spermatogonial cohorts during their self-renewal and differentiation are largely unclear. Here we show that AKT1S1, an AKT substrate and inhibitor of mTORC1, regulates the homeostasis of undifferentiated spermatogonia. Although deletion of Akt1s1 in mouse appears not grossly affecting steady-state spermatogenesis and male mice are fertile, the subset of differentiation-primed OCT4 spermatogonia decreased significantly, whereas self-renewing GFRα1 and proliferating PLZF spermatogonia were sustained. Both neonatal prospermatogonia and the first wave spermatogenesis were greatly reduced in Akt1s1 mice. Further analyses suggest that OCT4 spermatogonia in Akt1s1 mice possess altered PI3K/AKT-mTORC1 signaling, gene expression and carbohydrate metabolism, leading to their functionally compromised developmental potential. Collectively, these results revealed an important role of AKT1S1 in mediating the stage-specific signals that regulate the self-renewal and differentiation of spermatogonia during mouse spermatogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2024.02.002DOI Listing

Publication Analysis

Top Keywords

undifferentiated spermatogonia
12
mouse spermatogenesis
8
self-renewal differentiation
8
oct4 spermatogonia
8
akt1s1 mice
8
spermatogonia
7
akt1s1
5
stage-specific regulation
4
regulation undifferentiated
4
spermatogonia akt1s1-mediated
4

Similar Publications

The action of retinoic acid on spermatogonia in the testis.

Curr Top Dev Biol

January 2025

School of Molecular Biosciences, Washington State University, Pullman, Washington, United States. Electronic address:

For mammalian spermatogenesis to proceed normally, it is essential that the population of testicular progenitor cells, A undifferentiated spermatogonia (A), undergoes differentiation during the A to A1 transition that occurs at the onset of spermatogenesis. The commitment of the A population to differentiation and leaving a quiescent, stem-like state gives rise to all the spermatozoa produced across the lifespan of an individual, and ultimately determines male fertility. The action of all-trans retinoic acid (atRA) on the A population is the determining factor that induces this change.

View Article and Find Full Text PDF

Karyotype instability in the germline leads to infertility. Unlike the female germline, the male germline continuously produces fertile sperm throughout life. Here we present a molecular network responsible for maintaining karyotype stability in the male mouse germline.

View Article and Find Full Text PDF

Undifferentiated spermatogonia (Undiff-SPG) plays a critical role in maintaining continual spermatogenesis. However, the toxic effects and molecular mechanisms of maternal exposure to nanoplastics on offspring Undiff-SPG remain elusive. Here, we utilized a multiomics combined cytomorphological approach to explore the reproductive toxicity and mechanisms of polystyrene nanoplastics (PS-NPs) on offspring Undiff-SPG in mice after maternal exposure.

View Article and Find Full Text PDF

In the germ line and during early embryogenesis, DNA methylation (DNAme) undergoes global erasure and re-establishment to support germ cell and embryonic development. While DNAme acquisition during male germ cell development is essential for setting genomic DNA methylation imprints, other intergenerational roles for paternal DNAme in defining embryonic chromatin are unknown. Through conditional gene deletion of the de novo DNA methyltransferases Dnmt3a and/or Dnmt3b, we observe that DNMT3A primarily safeguards against DNA hypomethylation in undifferentiated spermatogonia, while DNMT3B catalyzes de novo DNAme during spermatogonial differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!