Backgruound: Reactive oxygen species (ROS) and inflammation are reported to have a fundamental role in the pathogenesis of ischemia-reperfusion (IR) injury, a leading cause of acute kidney injury. The present study investigated the role of pyruvate dehydrogenase kinase 4 (PDK4) in ROS production and inflammation following IR injury.

Methods: We used a streptozotocin-induced diabetic C57BL6/J mouse model, which was subjected to IR by clamping both renal pedicles. Cellular apoptosis and inflammatory markers were evaluated in NRK-52E cells and mouse primary tubular cells after hypoxia and reoxygenation using a hypoxia work station.

Results: Following IR injury in diabetic mice, the expression of PDK4, rather than the other PDK isoforms, was induced with a marked increase in pyruvate dehydrogenase E1α (PDHE1α) phosphorylation. This was accompanied by a pronounced ROS activation, as well as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1) production. Notably, sodium dichloroacetate (DCA) attenuated renal IR injury-induced apoptosis which can be attributed to reducing PDK4 expression and PDHE1α phosphorylation levels. DCA or shPdk4 treatment reduced oxidative stress and decreased TNF-α, IL-6, IL-1β, and MCP-1 production after IR or hypoxia-reoxygenation injury.

Conclusion: PDK4 inhibition alleviated renal injury with decreased ROS production and inflammation, supporting a critical role for PDK4 in IR mediated damage. This result indicates another potential target for reno-protection during IR injury; accordingly, the role of PDK4 inhibition needs to be comprehensively elucidated in terms of mitochondrial function during renal IR injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140394PMC
http://dx.doi.org/10.4093/dmj.2023.0196DOI Listing

Publication Analysis

Top Keywords

pyruvate dehydrogenase
12
oxidative stress
8
dehydrogenase kinase
8
ischemia-reperfusion injury
8
injury diabetic
8
diabetic mice
8
ros production
8
production inflammation
8
pdhe1α phosphorylation
8
mcp-1 production
8

Similar Publications

This study investigated the effects of bisphenol A (BPA) and the involvement of nuclear estrogen receptors (ESR) on testicular energy metabolism and spermatogenesis in zebrafish. Testes were incubated with DMSO, 10 pM or 10μM BPA for 6 or 72h, with some samples pre-incubated with the ESRα/β antagonist ICI 182,780. Gene and protein expressions were analyzed using real-time PCR and Western blot, respectively.

View Article and Find Full Text PDF

Regulation of anaplerotic enzymes by melatonin enhances resilience to cadmium toxicity in Vigna radiata (L.) R. Wilczek.

Plant Physiol Biochem

January 2025

Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.

Melatonin (Mel) is a tryptophan-derived (N-acetyl-5-methoxytryptamine) molecule. In the present study, role of Mel in the regulation of various anaplerotic enzymes is discussed in relation to N metabolism and H-ATPase activity in mung bean under Cd stress. The application of Mel to the Cd-stressed mung bean seedlings was remarkable in improving the activity of hexokinase (35.

View Article and Find Full Text PDF

Antibodies directed against bacterial antigens in sera of Polish patients with primary biliary cholangitis.

Front Cell Infect Microbiol

January 2025

Clinic of Polish Gastroenterology Foundation, Warsaw, Poland.

Background: Primary biliary cholangitis (PBC) is a cholestatic, autoimmune liver disease with the presence of characteristic autoantibodies. The aim of the work was to determine the level of antibodies directed against bacterial antigens: (anti-anti), (anti-), (anti- ) and () in sera of PBC patients. We also performed studies on the impact of the bacterial peptides on the specific antigen-antibody binding.

View Article and Find Full Text PDF

The multi-enzyme pyruvate dehydrogenase complex (PDHc) links glycolysis to the citric acid cycle and plays vital roles in metabolism, energy production, and cellular signaling. Although all components have been individually characterized, the intact PDHc structure remains unclear, hampering our understanding of its composition and dynamical catalytic mechanisms. Here, we report the in-situ architecture of intact mammalian PDHc by cryo-electron tomography.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!