Complete self-assembly and reassembly behavior of bitter peptide-protein necessitates multilevel theories that encompass phenomena ranging from the self-assembly of recombinant complex to atomic trajectories. An extension to the level of mechanism method was put forth, involves limited enzymatic digestion and bottom-up proteomics to dissect inherent heterogeneity within β-LG and β-LG-PPGLPDKY complex and uncover conformational and dynamic alterations occurring in specific local regions of the model protein. Bitter peptide PPGLPDKY spontaneously bound to IIAEKTK, IDALNENK, and YLLFCMENSAEPEQSLACQCLVR regions of β-LG in a 1:1 stoichiometric ratio to mask bitterness perception. Molecular dynamic simulation and free energy calculation provided time-varying atomic trajectories of the recombinant complex and found that a peptide was stabilized in the upper region of the hydrophobic cavity with the binding free energy of -30.56 kJ mol through 4 hydrogen bonds (Glu74, Glu55, Lys69, and Ser116) and hydrophobic interactions (Asn88, Asn90, and Glu112). Current research aims to provide valuable physical insights into the macroscopic self-assembly behavior between proteins and bitter peptides, and the meticulous design of highly acceptable taste characteristics in goat milk products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2023-24386 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!