Complete self-assembly and reassembly behavior of bitter peptide-protein necessitates multilevel theories that encompass phenomena ranging from the self-assembly of recombinant complex to atomic trajectories. An extension to the level of mechanism method was put forth, involves limited enzymatic digestion and bottom-up proteomics to dissect inherent heterogeneity within β-LG and β-LG-PPGLPDKY complex and uncover conformational and dynamic alterations occurring in specific local regions of the model protein. Bitter peptide PPGLPDKY spontaneously bound to IIAEKTK, IDALNENK, and YLLFCMENSAEPEQSLACQCLVR regions of β-LG in a 1:1 stoichiometric ratio to mask bitterness perception. Molecular dynamic simulation and free energy calculation provided time-varying atomic trajectories of the recombinant complex and found that a peptide was stabilized in the upper region of the hydrophobic cavity with the binding free energy of -30.56 kJ mol through 4 hydrogen bonds (Glu74, Glu55, Lys69, and Ser116) and hydrophobic interactions (Asn88, Asn90, and Glu112). Current research aims to provide valuable physical insights into the macroscopic self-assembly behavior between proteins and bitter peptides, and the meticulous design of highly acceptable taste characteristics in goat milk products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2023-24386 | DOI Listing |
Sci Adv
January 2025
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
During meiosis, pairing between homologous chromosomes is stabilized by the assembly of the synaptonemal complex (SC). The SC ensures the formation of crossovers between homologous chromosomes and regulates their distribution. However, how the SC regulates crossover formation remains elusive.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
Prion diseases, particularly sporadic cases, pose a challenge due to their complex nature and heterogeneity. The underlying mechanism of the spontaneous conversion from PrPC to PrPSc, the hallmark of prion diseases, remains elusive. To shed light on this process and the involvement of cofactors, we have developed an in vitro system that faithfully mimics spontaneous prion misfolding using minimal components.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China.
is an important bioresource to produce various antibacterial natural products, however, the time-consuming and labor-intensive genome editing toolkits hindered the construction and application of engineered strains, and this study aimed to establish an efficient CRISPR/Cas9n genome editing system in . Initially, the CRISPR/Cas9-mediated editing tool was employed to replace those awkward genome editing tools that relied on homologous recombination, while the off-target Cas9 exhibited high toxicity to Sf01. Therefore, the nickase mutation D10A, high-fidelity mutations including N497A, R661A, Q695A, and Q926A, and thiostrepton-induced promotor P were incorporated into the Cas9 expression cassette, which reduced its toxicity.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Haiping Fang, School of Physics, East China University of Science and Technology, Shanghai, 20023, China.
The human visual nervous system excels at recognizing and processing external stimuli, essential for various physiological functions. Biomimetic visual systems leverage biological synapse properties to improve memory encoding and perception. Optoelectronic devices mimicking these synapses can enhance wearable electronics, with layered heterojunction materials being ideal materials for optoelectronic synapses due to their tunable properties and biocompatibility.
View Article and Find Full Text PDFAm J Clin Exp Immunol
December 2024
Department of Surgery, Medical Faculty, Trakia University Stara Zagora, Bulgria.
Tertiary lymphoid structures (TLS), formerly recognized as Crohn's-like structures, serve as crucial biomarkers for evaluating the progression of colorectal cancer (CRC). Understanding their spatial distribution, cellular composition, and interactions within CRC is paramount for comprehending the immune response in the tumor microenvironment (TME). TLS are comprised of a T-cellular compartment and a B-cellular compartment, the latter encompassing follicular dendritic cells (FDCs), high endothelial venules (HEVs), and lymphatic vessels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!