Comparative analysis of granular starch hydrolysis and multi-structural changes by diverse α-amylases sources: Insights from waxy rice starch.

Food Chem

Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China. Electronic address:

Published: June 2024

Three cultivars of waxy rice starch with different multi-scale structures were subjected to α-amylase hydrolysis to determine amylopectin fine structure, production of oligosaccharides, morphology, and crystallinity of the partially hydrolyzed starch granules. α-amylases hydrolyzed the amylopectin B2 chain during the initial stage of hydrolysis, suggesting that it is primarily located in the outer shell of the granules. For waxy rice starch with loose structure, α-amylases attacked the crystalline and amorphous regions simultaneously in the initial stage, while for starch granules with compact structure, the outer shell blocklet (crystalline structure) can be a hurdle for α-amylases to proceed to hydrolysis of the internal granule structure. The ability of α-amylases from porcine pancreatic α-amylases to attack the outer shell crystalline structure was lower than that of α-amylases from Bacillus amyloliquefaciens and Aspergillus oryzae. These results show that α-amylase source and rice cultivar combinations can be used to generate diverse structures in degraded waxy rice starch.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.138622DOI Listing

Publication Analysis

Top Keywords

waxy rice
16
rice starch
16
outer shell
12
starch granules
8
initial stage
8
crystalline structure
8
starch
7
α-amylases
7
structure
6
rice
5

Similar Publications

Development of in vitro oral processing model for different rice: Effects of saliva volume and chewing time on physicochemical properties of rice boluses.

Food Chem

December 2024

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiaxing Institute of Future Food, Jiaxing 314050, China. Electronic address:

The in vitro model is widely preferred for digestion research due to its simplicity, reproducibility, and ethical advantages. However, the differences between in vivo and in vitro digestion present challenges. This study first developed an in vitro oral processing system to explore the influence of saliva volume and chewing time on the physicochemical properties of japonica rice (JR), indica rice (IR), and waxy rice (WR).

View Article and Find Full Text PDF

Green synthesis of starch/chitosan complex via ozone-mediated Schiff reaction: Structure, thermal behaviors and surface properties.

Int J Biol Macromol

January 2025

Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Food Green Processing Technology and Intelligent Equipment Hubei Engineering Research Center, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China. Electronic address:

Ozone was used as a green and environmentally friendly initiator to directly induce a Schiff base cross-linking reaction between chitosan and waxy rice starch (CS) in the present investigation. The effects of oxidation on the structure of chitosan/starch bio-based composite, along with the cross-linked structure formation via Schiff base reaction, were investigated and confirmed using FTIR, XRD, and XPS characterization techniques. The formation of new bonds (C=N) along with other attributes imparted by the cross-linking reaction were evaluated and characterized.

View Article and Find Full Text PDF

Creating of novel Wx allelic variations significantly altering Wx expression and rice eating and cooking quality.

J Plant Physiol

December 2024

Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China; China National Botanical Garden, Beijing, China. Electronic address:

Granule-bound starch synthase I (GBSSI) encoding gene Waxy (Wx), which largely regulates the amylose content of rice grains, is a master module determining rice eating and cooking quality (ECQ). Fine-tuning amylose level of grains is an ideal strategy to improve rice quality. Through fine editing of Wx promoter and 5'UTR by CRISPR/Cas9 system, we created 14 types of novel Wx allelic variations, of which MT7 and MT13 were able to alter Wx expression and amylose content of grains.

View Article and Find Full Text PDF
Article Synopsis
  • Pre-gelatinized starch is modified starch that can swell in cold water and has diverse industrial applications; this study evaluates high-pressure homogenization (HPH) as a method to produce it from various sources.
  • Eleven types of starch were processed through HPH, resulting in altered physical properties such as disrupted surface structures, improved water absorption, and changes in crystallinity and gelatinization temperatures.
  • The study found that waxy rice yielded the highest pre-gelatinization and water absorption, while cassava showed the greatest viscosity, suggesting HPH is an effective technique for enhancing the functional properties of pre-gelatinized starches.
View Article and Find Full Text PDF

Introduction: Whole-grain pigmented rice (WCP) provides many nutritional benefits compared to non-pigmented varieties. The textural quality of cooked whole-grain rice, particularly its hardness, is crucial for consumers' preferences.

Materials And Methods: We investigated the impact of multiple-grain nutrient components on textural attributes through Pearson Correlation and Path Coefficient Analyses (PCA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!