Genomic surveillance of STEC/EHEC infections in Germany 2020 to 2022 permits insight into virulence gene profiles and novel O-antigen gene clusters.

Int J Med Microbiol

Division of Enteropathogenic Bacteria and Legionella (FG11) and National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany. Electronic address:

Published: March 2024

AI Article Synopsis

Article Abstract

Shiga toxin-producing E. coli (STEC), including the subgroup of enterohemorrhagic E. coli (EHEC), are important bacterial pathogens which cause diarrhea and the severe clinical manifestation hemolytic uremic syndrome (HUS). Genomic surveillance of STEC/EHEC is a state-of-the-art tool to identify infection clusters and to extract markers of circulating clinical strains, such as their virulence and resistance profile for risk assessment and implementation of infection prevention measures. The aim of the study was characterization of the clinical STEC population in Germany for establishment of a reference data set. To that end, from 2020 to 2022 1257 STEC isolates, including 39 of known HUS association, were analyzed and lead to a classification of 30.4 % into 129 infection clusters. Major serogroups in all clinical STEC analyzed were O26, O146, O91, O157, O103, and O145; and in HUS-associated strains were O26, O145, O157, O111, and O80. stx1 was less frequently and stx2 or a combination of stx, eaeA and ehxA were more frequently found in HUS-associated strains. Predominant stx gene subtypes in all STEC strains were stx1a (24 %) and stx2a (21 %) and in HUS-associated strains were mainly stx2a (69 %) and the combination of stx1a and stx2a (12.8 %). Furthermore, two novel O-antigen gene clusters (RKI6 and RKI7) and strains of serovars O45:H2 and O80:H2 showing multidrug resistance were detected. In conclusion, the implemented surveillance tools now allow to comprehensively define the population of clinical STEC strains including those associated with the severe disease manifestation HUS reaching a new surveillance level in Germany.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijmm.2024.151610DOI Listing

Publication Analysis

Top Keywords

clinical stec
12
hus-associated strains
12
genomic surveillance
8
surveillance stec/ehec
8
2020 2022
8
novel o-antigen
8
o-antigen gene
8
gene clusters
8
infection clusters
8
stec strains
8

Similar Publications

[Not Available].

Tidsskr Nor Laegeforen

January 2025

Medisinsk avdeling, Drammen Sykehus.

Background: When haemolytic anaemia, thrombocytopenia and renal failure are present, a thrombotic microangiopathic (TMA) condition should be suspected. We describe the various differential diagnoses of primary TMA syndromes, their clinical findings, clinical workup and treatment.

Case Presentation: A previously healthy man in his fifties was hospitalised with anaemia, thrombocytopenia, bilirubinaemia and acute renal failure.

View Article and Find Full Text PDF

Shiga toxin-producing Escherichia coli (STEC) infections pose a significant public health challenge, characterized by severe complications including hemolytic uremic syndrome (HUS) due to Shiga toxin (Stx) production. Current therapeutic approaches encounter a critical limitation, as conventional antibiotic treatment is contraindicated due to its propensity to trigger bacterial SOS response and subsequently enhance Stx production, which increases the likelihood of developing HUS in antibiotic-treated patients. The lack of effective, safe therapeutic options has created an urgent need for alternative treatment strategies for STEC infections.

View Article and Find Full Text PDF

Epidemiology of Shiga toxin-producing other than serotype O157:H7 in England, 2016-2023.

J Med Microbiol

January 2025

Field Service - South East and London, UK Health Security Agency, London, UK.

Shiga toxin-producing (STEC) infections are of public health concern as STEC can cause large national foodborne outbreaks of severe gastrointestinal disease, particularly in the young and elderly. In recent years, the implementation of PCR by diagnostic microbiology laboratories has improved the detection of STEC, and there has been an increase in notifications of cases of non-O157 STEC. However, the extent this increase in caseload can be attributed to the improved detection by PCR, or a true increase in non-O157 STEC infections, is unknown.

View Article and Find Full Text PDF

Renal cell carcinoma is one of the most aggressive urogenital malignancies, with an increasing number of cases worldwide. The majority of cases are diagnosed at an advanced stage, as this form of growth is typically silent. An accurate evaluation of the extent of the disease is crucial for selecting the most appropriate treatment approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!