Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Artificial Intelligence is being applied in oncology to improve patient and service outcomes. Yet, there is a limited understanding of how these advanced computational techniques are employed in cancer nursing to inform clinical practice. This review aimed to identify and synthesise evidence on artificial intelligence in cancer nursing.
Methods: CINAHL, MEDLINE, PsycINFO, and PubMed were searched using key terms between January 2010 and December 2022. Titles, abstracts, and then full texts were screened against eligibility criteria, resulting in twenty studies being included. Critical appraisal was undertaken, and relevant data extracted and analysed. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed.
Results: Artificial intelligence was used in numerous areas including breast, colorectal, liver, and ovarian cancer care among others. Algorithms were trained and tested on primary and secondary datasets to build predictive models of health problems related to cancer. Studies reported this led to improvements in the accuracy of predicting health outcomes or identifying variables that improved outcome prediction. While nurses led most studies, few deployed an artificial intelligence based digital tool with cancer nurses in a real-world setting as studies largely focused on developing and validating predictive models.
Conclusion: Electronic cancer nursing datasets should be established to enable artificial intelligence techniques to be tested and if effective implemented in digital prediction and other AI-based tools. Cancer nurses need more education on machine learning and natural language processing, so they can lead and contribute to artificial intelligence developments in oncology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejon.2024.102510 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!