Different aspects of cognitive functions are affected in patients with Alzheimer's disease. To date, little is known about the associations between features from brain-imaging and individual Alzheimer's disease (AD)-related cognitive functional changes. In addition, how these associations differ among different imaging modalities is unclear. Here, we trained and investigated 3D convolutional neural network (CNN) models that predicted sub-scores of the 13-item Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog13) based on MRI and FDG-PET brain-imaging data. Analysis of the trained network showed that each key ADAS-Cog13 sub-score was associated with a specific set of brain features within an imaging modality. Furthermore, different association patterns were observed in MRI and FDG-PET modalities. According to MRI, cognitive sub-scores were typically associated with structural changes of subcortical regions, including amygdala, hippocampus, and putamen. Comparatively, according to FDG-PET, cognitive functions were typically associated with metabolic changes of cortical regions, including the cingulated gyrus, occipital cortex, middle front gyrus, precuneus cortex, and the cerebellum. These findings brought insights into complex AD etiology and emphasized the importance of investigating different brain-imaging modalities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838875 | PMC |
http://dx.doi.org/10.1186/s40708-024-00218-x | DOI Listing |
Alzheimers Dement
January 2025
Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, Texas, USA.
Introduction: The relationship between Alzheimer's disease (AD) plasma biomarkers, and physical functioning (PF) across diverse races and ethnicities remains unclear. This study aims to explore this association in an ethno-racially diverse sample of cognitively unimpaired community-dwelling adults.
Methods: Data clinical examinations, neuropsychological tests, blood draws, and PF exams (Timed Up and Go [TUG] and Short Physical Performance Battery [SPPB]) were analyzed.
Theranostics
January 2025
Laboratory of Molecular Genetics, College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea.
Cathepsin D (Ctsd) has emerged as a promising therapeutic target for Alzheimer's disease (AD) due to its role in degrading intracellular amyloid beta (Aβ). Enhancing Ctsd activity could reduce Aβ42 accumulation and restore the Aβ42/40 ratio, offering a potential AD treatment strategy. This study explored Ctsd demethylation in AD mouse models using dCas9-Tet1-mediated epigenome editing.
View Article and Find Full Text PDFTheranostics
January 2025
Neurooncology Unit, Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid 28041, Spain.
Glioblastoma IDH wild type (GBM IDH wt) has a poor prognosis and a strongly associated with inflammatory processes. Inflammatory molecules generate positive feedback with tumor cells fueling tumor growth as well as recruitment of immune cells that promote aggressiveness. Although the role of many inflammatory molecules is well known, there are many macromolecules, such as the S100A proteins, whose role is only now beginning to be established.
View Article and Find Full Text PDFDiscov Public Health
December 2024
Present Address: Department of Global Health, Georgetown University School of Health, Washington, DC USA.
Background: Nepal, like other low- and middle-income countries, is experiencing a rapid increase in the number of older adults and the rate of aging in the population. This has increased the number of older adults with age-associated chronic illnesses, which in turn will escalate the demand for specialized healthcare and long-term care in Nepal. However, very little is known regarding the current healthcare system and health policies for older adults in Nepal.
View Article and Find Full Text PDFFront Aging Neurosci
December 2024
Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, Shandong, China.
Introduction: Previous research has suggested a link between the onset of Alzheimer's disease (AD) and metabolic disorder; however, the findings have been inconsistent. To date, the majority of metabolomics studies have focused on AD, resulting in a relative paucity of research on early-stage conditions such as mild cognitive impairment (MCI) underexplored. In this study, we employed a comprehensive platform for the early screening of individuals with MCI using high-throughput targeted metabolomics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!