A CRISPR base editing approach for the functional assessment of telomere biology disorder-related genes in human health and aging.

Biogerontology

Departments of Medicine and Biochemistry and Molecular Medicine, Molecular Biology Programme, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, H3T 1J4, Canada.

Published: April 2024

Telomere Biology Disorders (TBDs) are a group of rare diseases characterized by the presence of short and/or dysfunctional telomeres. They comprise a group of bone marrow failure syndromes, idiopathic pulmonary fibrosis, and liver disease, among other diseases. Genetic alterations (variants) in the genes responsible for telomere homeostasis have been linked to TBDs. Despite the number of variants already identified as pathogenic, an even more significant number must be better understood. The study of TBDs is challenging since identifying these variants is difficult due to their rareness, it is hard to predict their impact on the disease onset, and there are not enough samples to study. Most of our knowledge about pathogenic variants comes from assessing telomerase activity from patients and their relatives affected by a TBD. However, we still lack a cell-based model to identify new variants and to study the long-term impact of such variants on the genes involved in TBDs. Herein, we present a cell-based model using CRISPR base editing to mutagenize the endogenous alleles of 21 genes involved in telomere biology. We identified key residues in the genes encoding 17 different proteins impacting cell growth. We provide functional evidence for variants of uncertain significance in patients with TBDs. We also identified variants resistant to telomerase inhibition that, similar to cells expressing wild-type telomerase, exhibited increased tumorigenic potential using an in vitro tumour growth assay. We believe that such cell-based approaches will significantly advance our understanding of the biology of TBDs and may contribute to the development of new therapies for this group of diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10998809PMC
http://dx.doi.org/10.1007/s10522-024-10094-xDOI Listing

Publication Analysis

Top Keywords

telomere biology
12
crispr base
8
base editing
8
variants
8
variants genes
8
cell-based model
8
genes involved
8
tbds
6
genes
5
editing approach
4

Similar Publications

Telomere shortening ultimately causes replicative senescence. However, identifying the mechanisms driving replicative senescence in cell populations is challenging due to the heterogeneity of telomere lengths and the asynchrony of senescence onset. Here, we present a mathematical model of telomere shortening and replicative senescence in Saccharomyces cerevisiae which is quantitatively calibrated and validated using data of telomerase-deficient single cells.

View Article and Find Full Text PDF

Telomerase in cancer- ongoing quest and future discoveries.

Mol Biol Rep

January 2025

Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

Telomerase, constituted by the dynamic duo of telomerase reverse transcriptase (TERT), the catalytic entity, and an integral RNA component (TERC), is predominantly suppressed in differentiated human cells due to postnatal transcriptional repression of the TERT gene. Dysregulation of telomerase significantly contributes to cancer development via telomere-dependent and independent mechanisms. Telomerase activity is often elevated in advanced cancers, with TERT reactivation and upregulation of TERC observed in early tumorigenesis.

View Article and Find Full Text PDF

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

To identify the differences between aged and young human hematopoiesis, we performed a direct comparison of aged and young human hematopoietic stem and progenitor cells (HSPCs). Alterations in transcriptome profiles upon aging between humans and mice were then compared. Human specimens consist of CD34+ cells from bone marrow, and mouse specimens of hematopoietic stem cells (HSCs; Lin- Kit+ Sca1+ CD150+).

View Article and Find Full Text PDF

Background/objectives: As cells divide, telomeres shorten through a phenomenon known as telomere attrition, which leads to unavoidable senescence of cells. Unprotected DNA exponentially increases the odds of mutations, which can evolve into premature aging disorders and tumorigenesis. There has been growing academic and clinical interest in exploring this duality and developing optimal therapeutic strategies to combat telomere attrition in aging and cellular immortality in cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!