Pre-existing subclones determine radioresistance in rectal cancer organoids.

Cell Rep

Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands; Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands; Utrecht Platform for Organoid Technology, Utrecht University, Utrecht, the Netherlands. Electronic address:

Published: February 2024

More than half of all patients with cancer receive radiation therapy, but resistance is commonly observed. Currently, it is unknown whether resistance to radiation therapy is acquired or inherently present. Here, we employed organoids derived from rectal cancer and single-cell whole-genome sequencing to investigate the long-term evolution of subclones in response to radiation. Comparing single-cell whole-genome karyotypes between in-vitro-unirradiated and -irradiated organoids revealed three patterns of subclonal evolution: (1) subclonal persistence, (2) subclonal extinction, and (3) subclonal expansion. Organoids in which subclonal shifts occurred (i.e., expansion or extinction) became more resistant to radiation. Although radioresistant subclones did not share recurrent copy-number alterations that could explain their radioresistance, resistance was associated with reduced chromosomal instability, an association that was also observed in 529 human cancer cell lines. These data suggest that resistance to radiation is inherently present and associated with reduced chromosomal instability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2024.113735DOI Listing

Publication Analysis

Top Keywords

rectal cancer
8
radiation therapy
8
resistance radiation
8
single-cell whole-genome
8
associated reduced
8
reduced chromosomal
8
chromosomal instability
8
radiation
5
subclonal
5
pre-existing subclones
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!