Assessment of a fully-parametric thoraco-lumbar spine model generator with articulated ribcage.

J Biomech

Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy; IRCCS Galeazzi-Sant'Ambrogio Hospital, Milan, Italy. Electronic address:

Published: February 2024

The present paper describes a novel user-friendly fully-parametric thoraco-lumbar spine CAD model generator including the ribcage, based on 22 independent parameters (1 posterior vertebral body height per vertebra + 4 sagittal alignment parameters, namely pelvic incidence, sacral slope, L1-L5 lumbar lordosis, and T1-T12 thoracic kyphosis). Reliable third-order polynomial regression equations were implemented in Solidworks to analytically calculate 56 morphological dependent parameters and to automatically generate the spine CAD model based on primitive geometrical features. A standard spine CAD model, representing the case-study of an average healthy adult, was then created and positively assessed in terms of spinal anatomy, ribcage morphology, and sagittal profile. The immediate translation from CAD to FEM for relevant biomechanical analyses was successfully demonstrated, first, importing the CAD model into Abaqus, and then, iteratively calibrating the constitutive parameters of one lumbar and three thoracic FSUs, with particular interest on the hyperelastic material properties of the IVD, and the spinal and costo-vertebral ligaments. The credibility of the resulting lumbo-sacral and thoracic spine FEM with/without ribcage were assessed and validated throughout comparison with extensive in vitro and in vivo data both in terms of kinematics (range of motion) and dynamics (intradiscal pressure) either collected under pure bending moments and complex loading conditions (bending moments + axial compressive force).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2024.111951DOI Listing

Publication Analysis

Top Keywords

cad model
16
spine cad
12
fully-parametric thoraco-lumbar
8
thoraco-lumbar spine
8
model generator
8
spine
5
model
5
cad
5
assessment fully-parametric
4
spine model
4

Similar Publications

An AI-assisted algorithm has been developed to improve the detection of significant coronary artery disease (CAD) in high-risk individuals who have normal electrocardiograms (ECGs). This retrospective study analyzed ECGs from patients aged ≥ 18 years who were undergoing coronary angiography to obtain a clinical diagnosis at Chang Gung Memorial Hospital in Taiwan. Utilizing 12-lead ECG datasets, the algorithm integrated features like time intervals, amplitudes, and slope between peaks, a total of 561 features, with the XGBoost model yielding the best performance.

View Article and Find Full Text PDF

Coronary artery disease (CAD) remains the leading cause of death globally, highlighting the critical need for accurate diagnostic tools in medical imaging. Traditional segmentation methods for coronary angiograms often struggle with vessel discontinuity and inaccuracies, impeding effective diagnosis and treatment planning. To address these challenges, we developed the Local Adaptive Segmentation Framework (LASF), enhancing the YOLOv8 architecture with dilation and erosion algorithms to improve the continuity and precision of vascular image segmentation.

View Article and Find Full Text PDF

Background: He's team have recently developed a new Coronary Artery Tree description and Lesion EvaluaTion (CatLet) angiographic scoring system, which is capable of accounting for the variability in coronary anatomy, and risk-stratifying patients with coronary artery disease. Preliminary studies have demonstrated its superiority over the the Synergy between percutaneous coronary intervention with Taxus and Cardiac Surgery (SYNTAX) score with respect to outcome predictions for acute myocardial infarction (AMI) patients. However, there are fewer studies on the prognostic in chronic coronary artery disease(CAD).

View Article and Find Full Text PDF

Design: A retrospective cohort study assessing the mid-to-long-term outcomes and risk factors affecting the prosthetic success and survival of implant-supported cross-arch fixed dental prostheses (IFCDPs) with monolithic zirconia frameworks.

Cohort Selection: Forty-seven patients received a total of 51 cross-arch prostheses (27 maxillary and 24 mandibular prostheses), supported by 302 implants. Comprehensive clinical and radiographic records were available over a follow-up period ranging from 5 to 13 years.

View Article and Find Full Text PDF

Assessing the Impacts of Drug Loading and Polymer Type on Dissolution Behavior and Diffusive Flux of GDC-6893 Amorphous Solid Dispersions.

J Pharm Sci

January 2025

Department of Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA. Electronic address:

It is desirable but remains challenging to develop high drug load amorphous solid dispersions (ASDs) without compromising their quality attributes and bio-performance. In this work, we investigated the impacts of formulation variables, such as drug loading (DL) and polymer type, on dissolution behavior, diffusive flux, and in vitro drug absorption of ASDs of a high T compound, GDC-6893. ASDs with two polymers (HPMCAS and PVPVA) and various DLs (20 - 80%) were produced by spray drying and their drug-polymer miscibility was evaluated using solid-state nuclear magnetic resonance (ssNMR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!