A growing number of studies over the years has successfully employed computer simulation tools to understand, optimize and design spirit distillations. Amongst distilled spirits, cognac is a reputed wine spirit resulting from a double batch distillation process known as Charentaise distillation. This complex operation comprises the wine distillation (WD) and the brouillis distillation (BD), which are carried out in copper alembics. The distillate produced in each batch is fractionated and some of those fractions are recycled in subsequent batches. To improve the current understanding of the behavior of aroma compounds during the process, computer simulation modules were built in this work for a WD and a BD and the results were compared with experimental data. Of the 62 aroma compounds detected in the samples over time, 52 could be represented in the simulations, including 37 using the NRTL thermodynamic model to calculate vapor-liquid equilibria and another 15 with the UNIFAC model. Half of those had their concentration profiles and their partitioning accurately described by the simulation, most of which were modeled with NRTL. This highlights the need for reliable vapor-liquid equilibrium data for aroma compounds that were poorly represented or absent from the simulation as well as kinetic data for chemical reactions occurring during distillation. Furthermore, the impact of the recycling operation on the composition in aroma compounds of freshly distilled cognac was investigated. To represent a steady state, a mathematical model was employed to implement the recycling of distillate fractions during 8 successive Charentaise distillation cycles. The operation was shown to improve the extraction of ethanol and of all volatile compounds in the heart, reaching a pseudo steady state after 3 to 5 cycles. The recycling of the second fraction had a higher influence on the extraction of alcohols and terpenes, while for most esters and norisoprenoids the recycled head fractions played a bigger role.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2023.113861DOI Listing

Publication Analysis

Top Keywords

aroma compounds
16
charentaise distillation
12
impact recycling
8
freshly distilled
8
computer simulation
8
data aroma
8
steady state
8
distillation
6
simulation
5
aroma
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!