Developing prospective plant-animal binary protein systems with desirable nutritional and rheological properties stands as a significant and challenging pursuit within the food industry. Our understanding of the effect of adding salt on the aggregation behavior of food proteins is currently based on single model protein systems, however, this knowledge is rather limited following binary protein systems. Herein, various ionic strength settings are used to mitigate the repulsive forces between pea-cod mixed proteins during the thermal process, which further benefits the construction of a strengthened gel network. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) collectively demonstrated that larger heat-induced protein aggregates were formed, which increased in size with higher ionic strength. In the presence of 2.5 mM CaCl and 50 mM NaCl, the disulfide bonds significantly increased from 19.3 to 27.53 and 30.5 μM/g, respectively. Notably, similar aggregation behavior could be found when introducing 2.5 mM CaCl or 25 mM NaCl, due to the enhanced aggregation tendency by specific binding of Ca to proteins. With relevance to the strengthened cross-links between protein molecules, salt endowed composite gels with preferable gelling properties, evidenced by increased storage modulus. Additionally, the gelling temperature of mixed proteins decreased below 50 °C at elevated ionic strength. Simultaneously, the proportion of network proteins in composite gels increased remarkably from 82.05 % to 93.61 % and 92.31 % upon adding 5.0 mM CaCl and 100 mM NaCl, respectively. The findings provide a valuable foundation for designing economically viable and health-oriented plant-animal binary protein systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2024.113955 | DOI Listing |
Intrinsically disordered proteins or regions (IDPs or IDRs) exist as ensembles of conformations in the monomeric state and can adopt diverse binding modes, making their experimental and computational characterization challenging. Here, we developed Disobind, a deep-learning method that predicts inter-protein contact maps and interface residues for an IDR and a partner protein, leveraging sequence embeddings from a protein language model. Several current methods, in contrast, provide partner-independent predictions, require the structure of either protein, and/or are limited by the MSA quality.
View Article and Find Full Text PDFHuman Interleukin-6 (hIL-6) is a pro inflammatory cytokine that binds to its receptor, IL-6Rα followed by binding to gp130 and subsequent dimerization to form a hexamer signaling complex. A critical inflammation mediator, hIL-6 is associated with a diverse range of diseases and monoclonal antibodies are in clinical use that either target IL-6Rα or hIL-6 to inhibit signaling. Here, we perform high throughput structure-based computational screening using ensemble docking for small molecule antagonists for which the target conformations were taken from 600 ns long molecular dynamics simulations of the apo protein.
View Article and Find Full Text PDFEnviron Res
January 2025
Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018, Zaragoza, Spain. Electronic address:
This work explores the synergies between N-rich (Chlorella pyrenoidosa) and N-deficient (Undaria pinnatifida) macroalgae for the production of N-containing hydrochar and solid biofuels via co-hydrothermal carbonization (co-HTC). The impact of the feedstock (each alga alone and all possible binary mixtures) was comprehensively assessed under different temperatures (180-260 °C) and times (60-240 min). The synergies between micro and macroalgae governed product distribution, nitrogen transformation pathways, and hydrochar quality, with these effects varying by processing conditions.
View Article and Find Full Text PDFZhonghua Yi Xue Za Zhi
January 2025
Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital/Beijing Maternal and Child Health Care Hospital Affiliated to Capital Medical University, Beijing100026, China.
To explore the impact of gonadotropin-releasing hormone agonist (GnRH-a) on the pregnancy outcomes in frozen-thawed embryo transfer cycles for patients with recurrent implantation failure (RIF) complicated by chronic endometriti (CE). A total of 138 patients with RIF combined with CE who underwent in vitro fertilization/intracytoplamic sperm injection treatment-embryo transfer in the Department of Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University from January 2020 to December 2023 were retrospectively included. According to the endometrial preparation protocol, they were divided into two groups: the pituitary downregulation group (=59) and the artificial cycle group (=79).
View Article and Find Full Text PDFAnal Chem
January 2025
Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, United States.
Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) has been used to generate spatial maps of lipids, metabolites, peptides, proteins, and glycans in tissues; however, its use for mapping extracellular matrix (ECM) protein distributions is underexplored. ECM proteins play a major role in various pathological conditions, and changes in their spatial distributions affect the function and morphology of cells within tissues. ECM protein detection is challenging because they are large, insoluble, and undergo various post-translational modifications, such as glycosylation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!